Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
J Neural Eng ; 21(3)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38722308

RESUMEN

Objective. This study aims to develop and validate an end-to-end software platform, PyHFO, that streamlines the application of deep learning (DL) methodologies in detecting neurophysiological biomarkers for epileptogenic zones from EEG recordings.Approach. We introduced PyHFO, which enables time-efficient high-frequency oscillation (HFO) detection algorithms like short-term energy and Montreal Neurological Institute and Hospital detectors. It incorporates DL models for artifact and HFO with spike classification, designed to operate efficiently on standard computer hardware.Main results. The validation of PyHFO was conducted on three separate datasets: the first comprised solely of grid/strip electrodes, the second a combination of grid/strip and depth electrodes, and the third derived from rodent studies, which sampled the neocortex and hippocampus using depth electrodes. PyHFO demonstrated an ability to handle datasets efficiently, with optimization techniques enabling it to achieve speeds up to 50 times faster than traditional HFO detection applications. Users have the flexibility to employ our pre-trained DL model or use their EEG data for custom model training.Significance. PyHFO successfully bridges the computational challenge faced in applying DL techniques to EEG data analysis in epilepsy studies, presenting a feasible solution for both clinical and research settings. By offering a user-friendly and computationally efficient platform, PyHFO paves the way for broader adoption of advanced EEG data analysis tools in clinical practice and fosters potential for large-scale research collaborations.


Asunto(s)
Aprendizaje Profundo , Electroencefalografía , Electroencefalografía/métodos , Electroencefalografía/instrumentación , Animales , Ratas , Algoritmos , Epilepsia/fisiopatología , Epilepsia/diagnóstico , Programas Informáticos , Humanos , Hipocampo/fisiología
2.
3.
medRxiv ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585730

RESUMEN

In medication-resistant epilepsy, the goal of epilepsy surgery is to make a patient seizure free with a resection/ablation that is as small as possible to minimize morbidity. The standard of care in planning the margins of epilepsy surgery involves electroclinical delineation of the seizure onset zone (SOZ) and incorporation of neuroimaging findings from MRI, PET, SPECT, and MEG modalities. Resecting cortical tissue generating high-frequency oscillations (HFOs) has been investigated as a more efficacious alternative to targeting the SOZ. In this study, we used a support vector machine (SVM), with four distinct fast ripple (FR: 350-600 Hz on oscillations, 200-600 Hz on spikes) metrics as factors. These metrics included the FR resection ratio (RR), a spatial FR network measure, and two temporal FR network measures. The SVM was trained by the value of these four factors with respect to the actual resection boundaries and actual seizure free labels of 18 patients with medically refractory focal epilepsy. Leave one out cross-validation of the trained SVM in this training set had an accuracy of 0.78. We next used a simulated iterative virtual resection targeting the FR sites that were highest rate and showed most temporal autonomy. The trained SVM utilized the four virtual FR metrics to predict virtual seizure freedom. In all but one of the nine patients seizure free after surgery, we found that the virtual resections sufficient for virtual seizure freedom were larger in volume (p<0.05). In nine patients who were not seizure free, a larger virtual resection made five virtually seizure free. We also examined 10 medically refractory focal epilepsy patients implanted with the responsive neurostimulator system (RNS) and virtually targeted the RNS stimulation contacts proximal to sites generating FR at highest rates to determine if the simulated value of the stimulated SOZ and stimulated FR metrics would trend toward those patients with a better seizure outcome. Our results suggest: 1) FR measures can accurately predict whether a resection, defined by the standard of care, will result in seizure freedom; 2) utilizing FR alone for planning an efficacious surgery can be associated with larger resections; 3) when FR metrics predict the standard of care resection will fail, amending the boundaries of the planned resection with certain FR generating sites may improve outcome; and 4) more work is required to determine if targeting RNS stimulation contact proximal to FR generating sites will improve seizure outcome.

4.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411286

RESUMEN

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Síndromes Epilépticos , Adulto , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Fenitoína , Estudios Transversales , Síndromes Epilépticos/complicaciones , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Convulsiones/complicaciones , Imagen por Resonancia Magnética/métodos , Atrofia/patología
5.
Epilepsia ; 65(2): 362-377, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38041560

RESUMEN

OBJECTIVE: To confirm and investigate why pathological high-frequency oscillations (pHFOs), including ripples (80-200 Hz) and fast ripples (200-600 Hz), are generated during the UP-DOWN transition of the slow wave and if information transmission mediated by ripple temporal coupling is disrupted in the seizure-onset zone (SOZ). METHODS: We isolated 217 total units from 175.95 intracranial electroencephalography (iEEG) contact-hours of synchronized macro- and microelectrode recordings from 6 patients. Sleep slow oscillation (.1-2 Hz) epochs were identified in the iEEG recording. iEEG HFOs that occurred superimposed on the slow wave were transformed to phasors and adjusted by the phase of maximum firing in nearby units (i.e., maximum UP). We tested whether, in the SOZ, HFOs and associated action potentials (APs) occur more often at the UP-DOWN transition. We also examined ripple temporal correlations using cross-correlograms. RESULTS: At the group level in the SOZ, HFO and HFO-associated AP probability was highest during the UP-DOWN transition of slow wave excitability (p < < .001). In the non-SOZ, HFO and HFO-associated AP was highest during the DOWN-UP transition (p < < .001). At the unit level in the SOZ, 15.6% and 20% of units exhibited more robust firing during ripples (Cohen's d = .11-.83) and fast ripples (d = .36-.90) at the UP-DOWN transition (p < .05 f.d.r. corrected), respectively. By comparison, also in the SOZ, 6.6% (d = .14-.30) and 8.5% (d = .33-.41) of units had significantly less firing during ripples and fast ripples at the UP-DOWN transition, respectively. Additional data shows that ripple and fast ripple temporal correlations, involving global slow waves, between the hippocampus, entorhinal cortex, and parahippocampal gyrus were reduced by >50% in the SOZ compared to the non-SOZ (N = 3). SIGNIFICANCE: The UP-DOWN transition of slow wave excitability facilitates the activation of pathological neurons to generate pHFOs. Ripple temporal correlations across brain regions may be important in memory consolidation and are disrupted in the SOZ, perhaps by pHFO generation.


Asunto(s)
Ondas Encefálicas , Electrocorticografía , Humanos , Encéfalo , Sueño/fisiología , Ondas Encefálicas/fisiología , Giro Parahipocampal , Electroencefalografía
6.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961570

RESUMEN

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in i) all epilepsies; ii) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS); iii) non-lesional temporal lobe epilepsy (TLE-NL); iv) genetic generalised epilepsy; and (v) extra-temporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d=0.42). Maximum volume loss was observed in the corpus medullare (dmax=0.49) and posterior lobe grey matter regions, including bilateral lobules VIIB (dmax= 0.47), Crus I/II (dmax= 0.39), VIIIA (dmax=0.45) and VIIIB (dmax=0.40). Earlier age at seizure onset (ηρ2max=0.05) and longer epilepsy duration (ηρ2max=0.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional grey matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in non-motor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellum subregions into neurobiological models of epilepsy.

7.
Brain Commun ; 5(6): fcad289, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953846

RESUMEN

Inter-ictal spikes aid in the diagnosis of epilepsy and in planning surgery of medication-resistant epilepsy. However, the localizing information from spikes can be unreliable because spikes can propagate, and the burden of spikes, often assessed as a rate, does not always correlate with the seizure onset zone or seizure outcome. Recent work indicates identifying where spikes regularly emerge and spread could localize the seizure network. Thus, the current study sought to better understand where and how rates of single and coupled spikes, and especially brain regions with high-rate and leading spike of a propagating sequence, informs the extent of the seizure network. In 37 patients with medication-resistant temporal lobe seizures, who had surgery to treat their seizure disorder, an algorithm detected spikes in the pre-surgical depth inter-ictal EEG. A separate algorithm detected spike propagation sequences and identified the location of leading and downstream spikes in each sequence. We analysed the rate and power of single spikes on each electrode and coupled spikes between pairs of electrodes, and the proportion of sites with high-rate, leading spikes in relation to the seizure onset zone of patients seizure free (n = 19) and those with continuing seizures (n = 18). We found increased rates of single spikes in mesial temporal seizure onset zone (ANOVA, P < 0.001, η2 = 0.138), and increased rates of coupled spikes within, but not between, mesial-, lateral- and extra-temporal seizure onset zone of patients with continuing seizures (P < 0.001; η2 = 0.195, 0.113 and 0.102, respectively). In these same patients, there was a higher proportion of brain regions with high-rate leaders, and each sequence contained a greater number of spikes that propagated with a higher efficiency over a longer distance outside the seizure onset zone than patients seizure free (Wilcoxon, P = 0.0172). The proportion of high-rate leaders in and outside the seizure onset zone could predict seizure outcome with area under curve = 0.699, but not rates of single or coupled spikes (0.514 and 0.566). Rates of coupled spikes to a greater extent than single spikes localize the seizure onset zone and provide evidence for inter-ictal functional segregation, which could be an adaptation to avert seizures. Spike rates, however, have little value in predicting seizure outcome. High-rate spike sites leading propagation could represent sources of spikes that are important components of an efficient seizure network beyond the clinical seizure onset zone, and like the seizure onset zone these, too, need to be removed, disconnected or stimulated to increase the likelihood for seizure control.

8.
Brain Commun ; 5(5): fcad242, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869578

RESUMEN

The neuronal circuit disturbances that drive inter-ictal and ictal epileptiform discharges remain elusive. Using a combination of extra-operative macro-electrode and micro-electrode inter-ictal recordings in six pre-surgical patients during non-rapid eye movement sleep, we found that, exclusively in the seizure onset zone, fast ripples (200-600 Hz), but not ripples (80-200 Hz), frequently occur <300 ms before an inter-ictal intra-cranial EEG spike with a probability exceeding chance (bootstrapping, P < 1e-5). Such fast ripple events are associated with higher spectral power (P < 1e-10) and correlated with more vigorous neuronal firing than solitary fast ripple (generalized linear mixed-effects model, P < 1e-9). During the intra-cranial EEG spike that follows a fast ripple, action potential firing is lower than during an intra-cranial EEG spike alone (generalized linear mixed-effects model, P < 0.05), reflecting an inhibitory restraint of intra-cranial EEG spike initiation. In contrast, ripples do not appear to prime epileptiform spikes. We next investigated the clinical significance of pre-spike fast ripple in a separate cohort of 23 patients implanted with stereo EEG electrodes, who underwent resections. In non-rapid eye movement sleep recordings, sites containing a high proportion of fast ripple preceding intra-cranial EEG spikes correlate with brain areas where seizures begin more than solitary fast ripple (P < 1e-5). Despite this correlation, removal of these sites does not guarantee seizure freedom. These results are consistent with the hypothesis that fast ripple preceding EEG spikes reflect an increase in local excitability that primes EEG spike discharges preferentially in the seizure onset zone and that epileptogenic brain regions are necessary, but not sufficient, for initiating inter-ictal epileptiform discharges.

9.
JAMA Neurol ; 80(11): 1155-1165, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721736

RESUMEN

Importance: Published data about the impact of poststroke seizures (PSSs) on the outcomes of patients with stroke are inconsistent and have not been systematically evaluated, to the authors' knowledge. Objective: To investigate outcomes in people with PSS compared with people without PSS. Data Sources: MEDLINE, Embase, PsycInfo, Cochrane, LILACS, LIPECS, and Web of Science, with years searched from 1951 to January 30, 2023. Study Selection: Observational studies that reported PSS outcomes. Data Extraction and Synthesis: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist was used for abstracting data, and the Joanna Briggs Institute tool was used for risk-of-bias assessment. Data were reported as odds ratio (OR) and standardized mean difference (SMD) with a 95% CI using a random-effects meta-analysis. Publication bias was assessed using funnel plots and the Egger test. Outlier and meta-regression analyses were performed to explore the source of heterogeneity. Data were analyzed from November 2022 to January 2023. Main Outcomes and Measures: Measured outcomes were mortality, poor functional outcome (modified Rankin scale [mRS] score 3-6), disability (mean mRS score), recurrent stroke, and dementia at patient follow-up. Results: The search yielded 71 eligible articles, including 20 110 patients with PSS and 1 166 085 patients without PSS. Of the participants with PSS, 1967 (9.8%) had early seizures, and 10 605 (52.7%) had late seizures. The risk of bias was high in 5 studies (7.0%), moderate in 35 (49.3%), and low in 31 (43.7%). PSSs were associated with mortality risk (OR, 2.1; 95% CI, 1.8-2.4), poor functional outcome (OR, 2.2; 95% CI, 1.8-2.8), greater disability (SMD, 0.6; 95% CI, 0.4-0.7), and increased dementia risk (OR, 3.1; 95% CI, 1.3-7.7) compared with patients without PSS. In subgroup analyses, early seizures but not late seizures were associated with mortality (OR, 2.4; 95% CI, 1.9-2.9 vs OR, 1.2; 95% CI, 0.8-2.0) and both ischemic and hemorrhagic stroke subtypes were associated with mortality (OR, 2.2; 95% CI, 1.8-2.7 vs OR, 1.4; 95% CI, 1.0-1.8). In addition, early and late seizures (OR, 2.4; 95% CI, 1.6-3.4 vs OR, 2.7; 95% CI, 1.8-4.1) and stroke subtypes were associated with poor outcomes (OR, 2.6; 95% CI, 1.9-3.7 vs OR, 1.9; 95% CI, 1.0-3.6). Conclusions and Relevance: Results of this systematic review and meta-analysis suggest that PSSs were associated with significantly increased mortality and severe disability in patients with history of stroke. Unraveling these associations is a high clinical and research priority. Trials of interventions to prevent seizures may be warranted.


Asunto(s)
Demencia , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Convulsiones/etiología , Evaluación de Resultado en la Atención de Salud
10.
medRxiv ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37609251

RESUMEN

Objective: To confirm and investigate why pathological HFOs (pHFOs), including Ripples [80-200 Hz] and fast ripples [200-600 Hz], are generated during the UP-DOWN transition of the slow wave and if pHFOs interfere with information transmission. Methods: We isolated 217 total units from 175.95 iEEG contact-hours of synchronized macro- and microelectrode recordings from 6 patients. Sleep slow oscillation (0.1-2 Hz) epochs were identified in the iEEG recording. iEEG HFOs that occurred superimposed on the slow wave were transformed to phasors and adjusted by the phase of maximum firing in nearby units (i.e., maximum UP). We tested whether, in the seizure onset zone (SOZ), HFOs and associated action potentials (AP) occur more often at the UP-DOWN transition. We also examined ripple temporal correlations using cross correlograms. Results: At the group level in the SOZ, HFO and HFO-associated AP probability was highest during the UP-DOWN transition of slow wave excitability (p<<0.001). In the non-SOZ, HFO and HFO-associated AP was highest during the DOWN-UP transition (p<<0.001). At the unit level in the SOZ, 15.6% and 20% of units exhibited more robust firing during ripples (Cohen's d=0.11-0.83) and fast ripples (d=0.36-0.90) at the UP-DOWN transition (p<0.05 f.d.r corrected), respectively. By comparison, also in the SOZ, 6.6% (d=0.14-0.30) and 8.5% (d=0.33-0.41) of units had significantly less firing during ripples and fast ripples at the UP-DOWN transition, respectively. Additional data shows ripple temporal correlations, involving global slow waves, between the hippocampus, entorhinal cortex, and parahippocampal gyrus were reduced by ~50-80% in the SOZ compared to the non-SOZ (N=3). Significance: The UP-DOWN transition of slow wave excitability facilitates the activation of pathological neurons to generate pHFOs. The pathological neurons and pHFOs disrupt ripple temporal correlations across brain regions that transfer information and may be important in memory consolidation.

11.
Epilepsy Behav ; 145: 109278, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356226

RESUMEN

BACKGROUND: Functional seizures (FS) are paroxysmal episodes, resembling epileptic seizures, but without underlying epileptic abnormality. The aetiology and neuroanatomic associations are incompletely understood. Recent brain imaging data indicate cerebral changes, however, without clarifying possible pathophysiology. In the present study, we specifically investigated the neuroanatomic changes in subregions of the amygdala and hippocampus in FS. METHODS: T1 MRI scans of 37 female patients with FS and 37 age-matched female seizure naïve controls (SNC) were analyzed retrospectively in FreeSurfer version 7.1. Seizure naïve controls included patients with depression and anxiety disorders. The analysis included whole-brain cortical thickness, subcortical volumes, and subfields of the amygdala and hippocampus. Group comparisons were carried out using multivariable linear models. RESULTS: The FS and SNC groups did not differ in the whole hippocampus and amygdala volumes. However, patients had a significant reduction of the right lateral amygdala volume (p = 0.00041), an increase of the right central amygdala, (p = 0.037), and thinning of the left superior frontal gyrus (p = 0.024). Additional findings in patients were increased volumes of the right medial amygdala (p = 0.031), left anterior amygdala (p = 0.017), and left dentate gyrus of the hippocampus (p = 0.035). CONCLUSIONS: The observations from the amygdala and hippocampus segmentation affirm that there are neuroanatomic associations of FS. The pattern of these changes aligned with some of the cerebral changes described in chronic stress conditions and depression. The pattern of detected changes further study, and may, after validation, provide biomarkers for diagnosis and treatment.


Asunto(s)
Amígdala del Cerebelo , Epilepsia , Humanos , Femenino , Estudios Retrospectivos , Amígdala del Cerebelo/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Convulsiones/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
12.
J Neurosurg ; 139(6): 1588-1597, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37243562

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the utility and safety of "hybrid" stereo-electroencephalography (SEEG) in guiding epilepsy surgery and in providing information at single-neuron levels (i.e., single-unit recording) to further the understanding of the mechanisms of epilepsy and the neurocognitive processes unique to humans. METHODS: The authors evaluated 218 consecutive patients undergoing SEEG procedures from 1993 through 2018 at a single academic medical center to assess the utility and safety of this technique in both guiding epilepsy surgery and providing single-unit recordings. The hybrid electrodes used in this study contained macrocontacts and microwires to simultaneously record intracranial EEG and single-unit activity (hybrid SEEG). The outcomes of SEEG-guided surgical interventions were examined, as well as the yield and scientific utility of single-unit recordings in 213 patients who participated in the research involving single-unit recordings. RESULTS: All patients underwent SEEG implantation by a single surgeon and subsequent video-EEG monitoring (mean of 10.2 electrodes per patient and 12.0 monitored days). Epilepsy networks were localized in 191 (87.6%) patients. Two clinically significant procedural complications (one hemorrhage and one infection) were noted. Of 130 patients who underwent subsequent focal epilepsy surgery with a minimum 12-month follow-up, 102 (78.5%) underwent resective surgery and 28 (21.5%) underwent closed-loop responsive neurostimulation (RNS) with or without resection. Seizure freedom was achieved in 65 (63.7%) patients in the resective group. In the RNS group, 21 (75.0%) patients achieved 50% or greater seizure reduction. When the initial period of 1993 through 2013 before responsive neurostimulator implantation in 2014 was compared with the subsequent period of 2014 through 2018, the proportion of SEEG patients undergoing focal epilepsy surgery grew from 57.9% to 79.7% due to the advent of RNS, despite a decline in focal resective surgery from 55.3% to 35.6%. A total of 18,680 microwires were implanted in 213 patients, resulting in numerous significant scientific findings. Recent recordings from 35 patients showed a yield of 1813 neurons, with a mean yield of 51.8 neurons per patient. CONCLUSIONS: Hybrid SEEG enables safe and effective localization of epileptogenic zones to guide epilepsy surgery and provides unique scientific opportunities to investigate neurons from various brain regions in conscious patients. This technique will be increasingly utilized due to the advent of RNS and may prove a useful approach to probe neuronal networks in other brain disorders.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Humanos , Epilepsia Refractaria/cirugía , Electrodos Implantados , Epilepsia/cirugía , Epilepsias Parciales/cirugía , Convulsiones/cirugía , Electroencefalografía/métodos , Técnicas Estereotáxicas , Resultado del Tratamiento , Estudios Retrospectivos
13.
medRxiv ; 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37034609

RESUMEN

The neuronal circuit disturbances that drive interictal and ictal epileptiform discharges remains elusive. Using a combination of extraoperative macro- and micro-electrode interictal recordings in six presurgical patients during non-rapid eye movement (REM) sleep we found that, exclusively in the seizure onset zone, fast ripples (FR; 200-600Hz), but not ripples (80-200 Hz), frequently occur <300 msec before an interictal intracranial EEG (iEEG) spike with a probability exceeding chance (bootstrapping, p<1e-5). Such FR events are associated with higher spectral power (p<1e-10) and correlated with more vigorous neuronal firing than solitary FR (generalized linear mixed-effects model, GLMM, p<1e-3) irrespective of FR power. During the iEEG spike that follows a FR, action potential firing is lower than during a iEEG spike alone (GLMM, p<1e-10), reflecting an inhibitory restraint of iEEG spike initiation. In contrast, ripples do not appear to prime epileptiform spikes. We next investigated the clinical significance of pre-spike FR in a separate cohort of 23 patients implanted with stereo EEG electrodes who underwent resections. In non-REM sleep recordings, sites containing a high proportion of FR preceding iEEG spikes correlate with brain areas where seizures begin more than solitary FR (p<1e-5). Despite this correlation, removal of these sites does not guarantee seizure freedom. These results are consistent with the hypothesis that FR preceding EEG spikes reflect an increase in local excitability that primes EEG spike discharges preferentially in the seizure onset zone and that epileptogenic brain regions are necessary, but not sufficient, for initiating interictal epileptiform discharges.

14.
Epilepsia ; 64(5): e48-e55, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36906958

RESUMEN

How responsive neurostimulation (RNS) decreases seizure frequency is unclear. Stimulation may alter epileptic networks during inter-ictal epochs. Definitions of the epileptic network vary but fast ripples (FRs) may be an important substrate. We, therefore, examined whether stimulation of FR-generating networks differed in RNS super responders and intermediate responders. In 10 patients, with subsequent RNS placement, we detected FRs from stereo-electroencephalography (SEEG) contacts during pre-surgical evaluation. The normalized coordinates of the SEEG contacts were compared with those of the eight RNS contacts, and RNS-stimulated SEEG contacts were defined as those within 1.5 cm3 of the RNS contacts. We compared the post-RNS placement seizure outcome to (1) the ratio of stimulated SEEG contacts in the seizure-onset zone (SOZ stimulation ratio [SR]); (2) the ratio of FR events on stimulated contacts (FR SR); and (3) the global efficiency of the FR temporal correlational network on stimulated contacts (FR SGe). We found that the SOZ SR (p = .18) and FR SR (p = .06) did not differ in the RNS super responders and intermediate responders, but the FR SGe did (p = .02). In super responders, highly active desynchronous sites of the FR network were stimulated. RNS that better targets FR networks, as compared to the SOZ, may reduce epileptogenicity more.


Asunto(s)
Electroencefalografía , Convulsiones , Humanos
16.
Sci Rep ; 13(1): 367, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611059

RESUMEN

Fast ripples (FR) are a biomarker of epileptogenic brain, but when larger portions of FR generating regions are resected seizure freedom is not always achieved. To evaluate and improve the diagnostic accuracy of FR resection for predicting seizure freedom we compared the FR resection ratio (RR) with FR network graph theoretical measures. In 23 patients FR were semi-automatically detected and quantified in stereo EEG recordings during sleep. MRI normalization and co-registration localized contacts and relation to resection margins. The number of FR, and graph theoretical measures, which were spatial (i.e., FR rate-distance radius) or temporal correlational (i.e., FR mutual information), were compared with the resection margins and with seizure outcome We found that the FR RR did not correlate with seizure-outcome (p > 0.05). In contrast, the FR rate-distance radius resected difference and the FR MI mean characteristic path length RR did correlate with seizure-outcome (p < 0.05). Retesting of positive FR RR patients using either FR rate-distance radius resected difference or the FR MI mean characteristic path length RR reduced seizure-free misclassifications from 44 to 22% and 17%, respectively. These results indicate that graph theoretical measures of FR networks can improve the diagnostic accuracy of the resection of FR events for predicting seizure freedom.


Asunto(s)
Márgenes de Escisión , Convulsiones , Humanos , Convulsiones/diagnóstico , Convulsiones/cirugía , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Pronóstico , Imagen por Resonancia Magnética , Electroencefalografía/métodos
17.
Neurol Clin Pract ; 12(6): e189-e198, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36540138

RESUMEN

Background and Objectives: Although moderate and severe traumatic brain injury (TBI) can cause posttraumatic epilepsy (PTE), many patients with functional seizures (FS) also report a history of mild TBI. To determine whether features of TBI history differ between patients with epileptic seizures (ES) and FS, we compared patient reports of TBI severity, symptoms, and causes of injury. Methods: We recruited patients undergoing video-EEG evaluation for the diagnosis of ES, FS, mixed ES and FS, or physiologic seizure-like events at an academic, tertiary referral center. Patients and their caregivers were interviewed before final video-EEG diagnosis regarding their TBI histories, including concussive symptoms and causes of injury. Results: Of 506 patients, a greater percentage of patients with FS reported a history of TBI than patients with ES (70% vs 59%, aOR = 1.75 [95% CI: 1.00-3.05], p = 0.047). TBI with loss of consciousness (LOC) lasting less than 30 minutes was more frequently reported among patients with FS than with ES (27% vs 13%, aOR = 2.38 [1.26-4.47], p < 0.01). The proportion of patients reporting other neurologic symptoms immediately after TBI was not significantly different between FS and ES (40% vs 29%, p = 0.08). Causes of TBI were found to differ, with TBIs caused by falls from a height (17% vs 10%, aOR = 2.24 [1.06-4.70], p = 0.03) or motor vehicle collisions (27% vs 11%, aOR = 2.96 [1.54-5.67], p < 0.01) reported more frequently in FS than ES. Discussion: Our findings further the association of mild TBI with FS and prompt reconsideration of typical assumptions regarding the significance of a reported TBI history in patients with previously undifferentiated seizures. Although common in both groups, TBI with LOC less than 30 minutes and causes of injury that are commonly believed to be more severe were reported more frequently in FS than ES. This suggests that a patient or caregiver reporting of these features does not imply that PTE is a more probable diagnosis than FS. Although a history of TBI with LOC and presumed high-risk causes of injury intuitively raises suspicion for PTE, clinicians should be cautioned that these historical factors also were a frequent finding in patients with FS.

18.
J Neural Eng ; 19(6)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36541546

RESUMEN

Objective.Intracranially-recorded interictal high-frequency oscillations (HFOs) have been proposed as a promising spatial biomarker of the epileptogenic zone. However, HFOs can also be recorded in the healthy brain regions, which complicates the interpretation of HFOs. The present study aimed to characterize salient features of physiological HFOs using deep learning (DL).Approach.We studied children with neocortical epilepsy who underwent intracranial strip/grid evaluation. Time-series EEG data were transformed into DL training inputs. The eloquent cortex (EC) was defined by functional cortical mapping and used as a DL label. Morphological characteristics of HFOs obtained from EC (ecHFOs) were distilled and interpreted through a novel weakly supervised DL model.Main results.A total of 63 379 interictal intracranially-recorded HFOs from 18 children were analyzed. The ecHFOs had lower amplitude throughout the 80-500 Hz frequency band around the HFO onset and also had a lower signal amplitude in the low frequency band throughout a one-second time window than non-ecHFOs, resembling a bell-shaped template in the time-frequency map. A minority of ecHFOs were HFOs with spikes (22.9%). Such morphological characteristics were confirmed to influence DL model prediction via perturbation analyses. Using the resection ratio (removed HFOs/detected HFOs) of non-ecHFOs, the prediction of postoperative seizure outcomes improved compared to using uncorrected HFOs (area under the ROC curve of 0.82, increased from 0.76).Significance.We characterized salient features of physiological HFOs using a DL algorithm. Our results suggested that this DL-based HFO classification, once trained, might help separate physiological from pathological HFOs, and efficiently guide surgical resection using HFOs.


Asunto(s)
Aprendizaje Profundo , Epilepsia , Niño , Humanos , Electroencefalografía/métodos , Convulsiones , Encéfalo
19.
eNeuro ; 9(6)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36418173

RESUMEN

Studies of interictal EEG functional connectivity in the epileptic brain seek to identify abnormal interactions between brain regions involved in generating seizures, which clinically often is defined by the seizure onset zone (SOZ). However, there is evidence for abnormal connectivity outside the SOZ (NSOZ), and removal of the SOZ does not always result in seizure control, suggesting, in some cases, that the extent of abnormal connectivity indicates a larger seizure network than the SOZ. To better understand the potential differences in interictal functional connectivity in relation to the seizure network and outcome, we computed event connectivity in the theta (4-8 Hz, ThEC), low-gamma (30-55 Hz, LGEC), and high-gamma (65-95 Hz, HGEC) bands from interictal depth EEG recorded in surgical patients with medication-resistant seizures suspected to begin in the temporal lobe. Analysis finds stronger LGEC and HGEC in SOZ than NSOZ of seizure-free (SF) patients (p = 1.10e-9, 0.0217), but no difference in not seizure-free (NSF) patients. There were stronger LGEC and HGEC between mesial and lateral temporal SOZ of SF than NSF patients (p = 0.00114, 0.00205), and stronger LGEC and ThEC in NSOZ of NSF than SF patients (p = 0.0089, 0.0111). These results show that event connectivity is sensitive to differences in the interactions between regions in SOZ and NSOZ and SF and NSF patients. Patients with differential strengths in event connectivity could represent a well-localized seizure network, whereas an absence of differences could indicate a larger seizure network than the one localized by the SOZ and higher likelihood for seizure recurrence.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Convulsiones , Encéfalo , Lóbulo Temporal , Electroencefalografía
20.
Neurobiol Dis ; 175: 105928, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36403895

RESUMEN

Epileptiform spikes are used to localize epileptogenic brain tissue. The mechanisms that spontaneously trigger epileptiform discharges are not yet elucidated. Pathological fast ripple (FR, 200-600 Hz) are biomarkers of epileptogenic brain, and we postulated that FR network interactions are involved in generating epileptiform spikes. Using macroelectrode stereo intracranial EEG (iEEG) recordings from a cohort of 46 patients we found that, in the seizure onset zone (SOZ), propagating FR were more often followed by an epileptiform spike, as compared with non-propagating FR (p < 0.05). Propagating FR had a distinct frequency and larger power (p < 1e-10) and were more strongly phase coupled to the peak of iEEG delta oscillation, which likely correspond with the DOWN states during non-REM sleep (p < 1e-8), than non-propagating FR. While FR propagation was rare, all FR occurred with the highest probability within +/- 400 msec of epileptiform spikes with superimposed high-frequency oscillations (p < 0.05). Thus, a sub-population of epileptiform spikes in the SOZ, are preceded by propagating FR that are coordinated by the DOWN state during non-REM sleep.


Asunto(s)
Ondas Encefálicas , Epilepsias Parciales , Humanos , Epilepsias Parciales/diagnóstico , Electrocorticografía , Encéfalo , Electroencefalografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA