RESUMEN
Understanding trait-trait coordination is essential for successful plant breeding and crop modeling. Notably, plant size drives variation in morphological, physiological, and performance-related traits, as described by allometric laws in ecology. Yet, as allometric relationships have been limitedly studied in crops, how they influence and possibly limit crop performance remains unknown. Here, we review how an allometry perspective on crops gains insights into the phenotypic evolution during crop domestication, the breeding of varieties adapted to novel conditions, and the prediction of crop yields. As allometry is an active field of research, modeling and manipulating crop allometric relationships can help to develop more resilient and productive agricultural systems to face future challenges.
Asunto(s)
Productos Agrícolas , Productos Agrícolas/genética , Productos Agrícolas/anatomía & histología , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Fenotipo , Carácter Cuantitativo Heredable , Domesticación , Fitomejoramiento , Evolución BiológicaRESUMEN
Biologists increasingly rely on computer code to collect and analyze their data, reinforcing the importance of published code for transparency, reproducibility, training, and a basis for further work. Here, we conduct a literature review estimating temporal trends in code sharing in ecology and evolution publications since 2010, and test for an influence of code sharing on citation rate. We find that code is rarely published (only 6% of papers), with little improvement over time. We also found there may be incentives to publish code: Publications that share code have tended to be low-impact initially, but accumulate citations faster, compensating for this deficit. Studies that additionally meet other Open Science criteria, open-access publication, or data sharing, have still higher citation rates, with publications meeting all three criteria (code sharing, data sharing, and open access publication) tending to have the most citations and highest rate of citation accumulation.
RESUMEN
Increasing the speed of scientific progress is urgently needed to address the many challenges associated with the biosphere in the Anthropocene. Consequently, the critical question becomes: How can science most rapidly progress to address large, complex global problems? We suggest that the lag in the development of a more predictive science of the biosphere is not only because the biosphere is so much more complex, or because we do not have enough data, or are not doing enough experiments, but, in large part, because of unresolved tension between the three dominant scientific cultures that pervade the research community. We introduce and explain the concept of the three scientific cultures and present a novel analysis of their characteristics, supported by examples and a formal mathematical definition/representation of what this means and implies. The three cultures operate, to varying degrees, across all of science. However, within the biosciences, and in contrast to some of the other sciences, they remain relatively more separated, and their lack of integration has hindered their potential power and insight. Our solution to accelerating a broader, predictive science of the biosphere is to enhance integration of scientific cultures. The process of integration-Scientific Transculturalism-recognizes that the push for interdisciplinary research, in general, is just not enough. Unless these cultures of science are formally appreciated and their thinking iteratively integrated into scientific discovery and advancement, there will continue to be numerous significant challenges that will increasingly limit forecasting and prediction efforts.
Asunto(s)
Predicción , MatemáticaRESUMEN
In the Anthropocene, intensifying ecological disturbances pose significant challenges to our predictive capabilities for ecosystem responses. Macroecology-which focuses on emergent statistical patterns in ecological systems-unveils consistent regularities in the organization of biodiversity and ecosystems. These regularities appear in terms of abundance, body size, geographical range, species interaction networks, or the flux of matter and energy. This paper argues for moving beyond qualitative resilience metaphors, such as the 'ball and cup', towards a more quantitative macroecological framework. We suggest a conceptual and theoretical basis for ecological resilience that integrates macroecology with a stochastic diffusion approximation constrained by principles of biological symmetry. This approach provides an alternative novel framework for studying ecological resilience in the Anthropocene. We demonstrate how our framework can effectively quantify the impacts of major disturbances and their extensive ecological ramifications. We further show how biological scaling insights can help quantify the consequences of major disturbances, emphasizing their cascading ecological impacts. The nature of these impacts prompts a re-evaluation of our understanding of resilience. Emphasis on regularities of ecological assemblages can help illuminate resilience dynamics and offer a novel basis to predict and manage the impacts of disturbance in the Anthropocene more efficiently. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Asunto(s)
Ecosistema , Resiliencia Psicológica , Biodiversidad , Geografía , EcologíaRESUMEN
Trees are pivotal to global biodiversity and nature's contributions to people, yet accelerating global changes threaten global tree diversity, making accurate species extinction risk assessments necessary. To identify species that require expert-based re-evaluation, we assess exposure to change in six anthropogenic threats over the last two decades for 32,090 tree species. We estimated that over half (54.2%) of the assessed species have been exposed to increasing threats. Only 8.7% of these species are considered threatened by the IUCN Red List, whereas they include more than half of the Data Deficient species (57.8%). These findings suggest a substantial underestimation of threats and associated extinction risk for tree species in current assessments. We also map hotspots of tree species exposed to rapidly changing threats around the world. Our data-driven approach can strengthen the efforts going into expert-based IUCN Red List assessments by facilitating prioritization among species for re-evaluation, allowing for more efficient conservation efforts.
Asunto(s)
Especies en Peligro de Extinción , Árboles , Biodiversidad , Conservación de los Recursos Naturales , Extinción BiológicaRESUMEN
Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana-tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana-to-tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana-favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.
Des preuves de plus en plus nombreuses suggèrent que la competition entre lianes et les arbres menace le puits de carbone mondial en ralentissant la récupération des forêts après une perturbation. Une théorie récente, fondée sur des observations locales et régionales, propose en outre que le succès compétitif des lianes sur les arbres est dû aux interactions entre la perturbation forestière et le climat. Nous présentons la première évaluation mondiale de la performance relative des lianes par rapport aux arbres en réponse aux perturbations forestières et aux facteurs climatiques. En utilisant un ensemble de données sans précédent, nous avons analysé 651 échantillons de végétation représentant 26,538 lianes et 82,802 arbres, issus de 556 emplacements uniques dans le monde entier, tirés de 83 publications. Les résultats montrent que les lianes ont de meilleure performances par rapport aux arbres (augmentation du ratio liane-arbre) lorsque les forêts sont perturbées, sous des zones chaudes aves précipitations faibles, et vers les basses altitudes tropicales. Nous avons également constaté que les lianes peuvent être un facteur critique entravant la récupération des forêts dans les forêts perturbées connaissant des climats favorables aux lianes, car les données de chronoséquence montrent que le succès compétitif élevé des lianes sur les arbres peut persister pendant des décennies après les perturbations, surtout lorsque la température annuelle moyenne dépasse 27.8°C, que les précipitations sont inférieures à 1614 mm et que le déficit hydrique climatique est supérieur à 829 mm. Ces découvertes révèlent que les forêts tropicales dégradées avec des conditions environnementales favorables aux lianes sont disproportionnellement plus vulnérables à la dominance des lianes, et peuvent ainsi potentiellement entraver la succession, avec d'importantes implications pour le puits de carbone mondial et devraient donc être la plus haute priorité à considérer pour la gestion de la restauration.
Asunto(s)
Árboles , Clima Tropical , Árboles/fisiología , Bosques , Secuestro de Carbono , AguaRESUMEN
Across the globe, tree species are under high anthropogenic pressure. Risks of extinction are notably more severe for species with restricted ranges and distinct evolutionary histories. Here, we use a global dataset covering 41,835 species (65.1% of known tree species) to assess the spatial pattern of tree species' phylogenetic endemism, its macroecological drivers, and how future pressures may affect the conservation status of the identified hotspots. We found that low-to-mid latitudes host most endemism hotspots, with current climate being the strongest driver, and climatic stability across thousands to millions of years back in time as a major co-determinant. These hotspots are mostly located outside of protected areas and face relatively high land-use change and future climate change pressure. Our study highlights the risk from climate change for tree diversity and the necessity to strengthen conservation and restoration actions in global hotspots of phylogenetic endemism for trees to avoid major future losses of tree diversity.
Asunto(s)
Biodiversidad , Cambio Climático , Filogenia , Conservación de los Recursos Naturales , Evolución Biológica , EcosistemaRESUMEN
The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequences of these changes. In two High Arctic study systems near Longyearbyen, Svalbard, a 20-year ITEX warming experiment and elevational gradients with and without nutrient input from nesting seabirds, we collected data on vegetation composition and structure, plant functional traits, ecosystem fluxes, multispectral remote sensing, and microclimate. The dataset contains 1,962 plant records and 16,160 trait measurements from 34 vascular plant taxa, for 9 of which these are the first published trait data. By integrating these comprehensive data, we bridge knowledge gaps and expand trait data coverage, including on intraspecific trait variation. These data can offer insights into ecosystem functioning and provide baselines to assess climate and environmental change impacts. Such knowledge is crucial for effective conservation and management in these vulnerable regions.
Asunto(s)
Clima , Ecosistema , Animales , Aves , Conocimiento , SvalbardRESUMEN
Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.
Asunto(s)
Biodiversidad , Ecosistema , Crecimiento Demográfico , FenotipoRESUMEN
As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
Asunto(s)
Magnoliopsida , Humanos , Filogenia , Cambio Climático , BiodiversidadRESUMEN
Scaling approaches in ecology assume that traits are the main attributes by which organisms influence ecosystem functioning. However, several recent empirical papers have found only weak links between traits and ecosystem functioning, questioning the usefulness of trait-based ecology (TBE). We argue that these studies often suffer from one or more widespread misconceptions. Specifically, these studies often (i) conflict with the conceptual foundations of TBE, (ii) lack theory- or hypothesis-driven selection and use of traits, (iii) tend to ignore intraspecific variation, and (iv) use experimental or study designs that are not well suited to make strong tests of TBE assumptions. Addressing these aspects could significantly improve our ability to scale from traits to ecosystem functioning.
Asunto(s)
Ecología , Ecosistema , Fenotipo , BiodiversidadRESUMEN
Massive biological databases of species occurrences, or georeferenced locations where a species has been observed, are essential inputs for modeling present and future species distributions. Location accuracy is often assessed by determining whether the observation geocoordinates fall within the boundaries of the declared political divisions. This otherwise simple validation is complicated by the difficulty of matching political division names to the correct geospatial object. Spelling errors, abbreviations, alternative codes, and synonyms in multiple languages present daunting name disambiguation challenges. The inability to resolve political division names reduces usable data, and analysis of erroneous observations can lead to flawed results. Here, we present the Geographic Name Resolution Service (GNRS), an application for correcting, standardizing, and indexing world political division names. The GNRS resolves political division names against a reference database that combines names and codes from GeoNames with geospatial object identifiers from the Global Administrative Areas Database (GADM). In a trial resolution of political division names extracted from >270 million species occurrences, only 1.9%, representing just 6% of occurrences, matched exactly to GADM political divisions in their original form. The GNRS was able to resolve, completely or in part, 92% of the remaining 378,568 political division names, or 86% of the full biodiversity occurrence dataset. In assessing geocoordinate accuracy for >239 million species occurrences, resolution of political divisions by the GNRS enabled the detection of an order of magnitude more errors and an order of magnitude more error-free occurrences. By providing a novel solution to a significant data quality impediment, the GNRS liberates a tremendous amount of biodiversity data for quantitative biodiversity research. The GNRS runs as a web service and is accessible via an API, an R package, and a web-based graphical user interface. Its modular architecture is easily integrated into existing data validation workflows.
Asunto(s)
Biodiversidad , Nombres , Bases de Datos Factuales , Estándares de ReferenciaRESUMEN
Plant life-history variation reflects different outcomes of natural selection given the strictures of resource allocation trade-offs. However, there is limited theory of selection predicting how leaves, stems, roots, and reproductive organs should evolve in concert across environments. Here, we synthesize two optimality theories to offer a general theory of plant carbon economics, named as Gmax theory, that shows how life-history variation is limited to phenotypes that have an approximately similar lifetime net carbon gain per body mass. In consequence, fast-slow economics spectra are the result of trait combinations obtaining similar lifetime net carbon gains from leaves and similar net carbon investment costs in stems, roots, and reproductive organs. Gmax theory also helps explain ecosystem and crop productivity and even helps guide carbon conservation strategies.
Asunto(s)
Carbono , Rasgos de la Historia de Vida , Ecosistema , Hojas de la Planta , PlantasRESUMEN
Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions.
Asunto(s)
Cambio Climático , Ecosistema , Bosques , Árboles , AguaRESUMEN
Cactaceae (cacti), a New World plant family, is one of the most endangered groups of organisms on the planet. Conservation planning is uncertain as it is unclear whether climate and land-use change will positively or negatively impact global cactus diversity. On the one hand, a common perception is that future climates will be favourable to cacti as they have multiple adaptations and specialized physiologies and morphologies for increased heat and drought. On the other hand, the wide diversity of the more than 1,500 cactus species, many of which occur in more mesic and cooler ecosystems, questions the view that most cacti can tolerate warmer and drought conditions. Here we assess the hypothesis that cacti will benefit and expand in potential distribution in a warmer and more drought-prone world. We quantified exposure to climate change through range forecasts and associated diversity maps for 408 cactus species under three Representative Concentration Pathways (2.6, 4.5 and 8.5) for 2050 and 2070. Our analyses show that 60% of species will experience a reduction in favourable climate, with about a quarter of species exposed to environmental conditions outside of the current realized niche in over 25% of their current distribution. These results show low sensitivity to many uncertainties in forecasting, mostly deriving from dispersal ability and model complexity rather than climate scenarios. While current range size and the International Union for Conservation of Nature's Red List category were not statistically significant predictors of predicted future changes in suitable climate area, epiphytes had the greatest exposure to novel climates. Overall, the number of cactus species at risk is projected to increase sharply in the future, especially in current richness hotspots. Land-use change has previously been identified as the second-most-common driver of threat among cacti, affecting many of the ~31% of cacti that are currently threatened. Our results suggest that climate change will become a primary driver of cactus extinction risk with 60-90% of species assessed negatively impacted by climate change and/or other anthropogenic processes, depending on how these threat processes are distributed across cactus species.
Asunto(s)
Cactaceae , Cambio Climático , Cactaceae/fisiología , Conservación de los Recursos Naturales , Sequías , EcosistemaRESUMEN
One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are â¼73,000 tree species globally, among which â¼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.
Asunto(s)
Conservación de los Recursos Naturales , Bosques , Árboles/clasificación , Planeta Tierra , Árboles/crecimiento & desarrolloRESUMEN
Outside controlled experimental plots, the impact of community attributes on primary productivity has rarely been compared to that of individual species. Here, we identified plant species of high importance for productivity (key species) in >29,000 diverse grassland communities in the European Alps, and compared their effects with those of community-level measures of functional composition (weighted means, variances, skewness and kurtosis). After accounting for the environment, the five most important key species jointly explained more deviance of productivity than any measure of functional composition alone. Key species were generally tall with high specific leaf areas. By dividing the observations according to distinct habitats, the explanatory power of key species and functional composition increased and key-species plant types and functional composition-productivity relationships varied systematically, presumably because of changing interactions and trade-offs between traits. Our results advocate for a careful consideration of species' individual effects on ecosystem functioning in complement to community-level measures.
Asunto(s)
Ecosistema , Pradera , Biodiversidad , Fenotipo , Hojas de la Planta , PlantasRESUMEN
Tropical forests are important to the regulation of climate and the maintenance of biodiversity on Earth. However, these ecosystems are threatened by climate change, as temperatures rise and droughts' frequency and duration increase. Xylem anatomical traits are an essential component in understanding and predicting forest responses to changes in water availability. We calculated the community-weighted means and variances of xylem anatomical traits of hydraulic and structural importance (plot-level trait values weighted by species abundance) to assess their linkages to local adaptation and community assembly in response to varying soil water conditions in an environmentally diverse Brazilian Atlantic Forest habitat. Scaling approaches revealed community-level tradeoffs in xylem traits not observed at the species level. Towards drier sites, xylem structural reinforcement and integration balanced against hydraulic efficiency and capacitance xylem traits, leading to changes in plant community diversity. We show how general community assembly rules are reflected in persistent fiber-parenchyma and xylem hydraulic tradeoffs. Trait variation across a moisture gradient is larger between species than within species and is realized mainly through changes in species composition and abundance, suggesting habitat specialization. Modeling efforts to predict tropical forest diversity and drought sensitivity may benefit from adding hydraulic architecture traits into the analysis.