Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
bioRxiv ; 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34545369

RESUMEN

Angiotensin converting enzyme 2 (ACE2) is an enzyme that limits activity of the renin-angiotensin system (RAS) and also serves as a receptor for the SARS-CoV-2 Spike (S) protein. Binding of S protein to ACE2 causes internalization which activates local RAS. ACE2 is on the X chromosome and its expression is regulated by sex hormones. In this study, we defined ACE2 mRNA abundance and examined effects of S protein on ACE2 activity and/or angiotensin II (AngII) levels in pivotal tissues (lung, adipose) from male and female mice. In lung, ACE2 mRNA abundance was reduced following gonadectomy (GDX) of male and female mice and was higher in XX than XY mice of the Four Core Genotypes (FCG). Reductions in lung ACE2 mRNA abundance by GDX occurred in XX, but not XY FCG female mice. Lung mRNA abundance of ADAM17 and TMPRSS2, enzymes that shed cell surface ACE2 and facilitate viral cell entry, was reduced by GDX in male but not female mice. For comparison, adipose ACE2 mRNA abundance was higher in female than male mice and higher in XX than XY FCG mice. Adipose ADAM17 mRNA abundance was increased by GDX of male and female mice. S protein reduced ACE2 activity in alveolar type II epithelial cells and 3T3-L1 adipocytes. Administration of S protein to male and female mice increased lung AngII levels and decreased adipose ACE2 activity in male but not female mice. These results demonstrate that sex differences in ACE2 expression levels may impact local RAS following S protein exposures.

2.
J Am Heart Assoc ; 8(23): e012309, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31752639

RESUMEN

Background We have previously reported that female mice exposed to maternal separation and early weaning (MSEW), a model of early life stress, show exacerbated diet-induced obesity associated with hypertension. The goal of this study was to test whether MSEW promotes angiotensin II-dependent hypertension via activation of the renin-angiotensin system in adipose tissue. Methods and Results MSEW was achieved by daily separations from the dam and weaning at postnatal day 17, while normally reared controls were weaned at postnatal day 21. Female controls and MSEW weanlings were placed on a low-fat diet (LF, 10% kcal from fat) or high-fat diet (HF, 60% kcal from fat) for 20 weeks. MSEW did not change mean arterial pressure in LF-fed mice but increased it in HF-fed mice compared with controls (P<0.05). In MSEW mice fed a HF, angiotensin II concentration in plasma and adipose tissue was elevated compared with controls (P<0.05). In addition, angiotensinogen concentration was increased solely in adipose tissue from MSEW mice (P<0.05), while angiotensin-converting enzyme protein expression and activity were similar between groups. Chronic enalapril treatment (2.5 mg/kg per day, drinking water, 7 days) reduced mean arterial pressure in both groups of mice fed a HF (P<0.05) and abolished the differences due to MSEW. Acute angiotensin II-induced increases in mean arterial pressure (10 µg/kg SC) were attenuated in untreated MSEW HF-fed mice compared to controls (P<0.05); however, this response was similar between groups in enalapril-treated mice. Conclusions The upregulation of angiotensinogen and angiotensin II in adipose tissue could be an important mechanism by which female MSEW mice fed a HF develop hypertension.


Asunto(s)
Angiotensina II/fisiología , Hipertensión/etiología , Privación Materna , Obesidad/complicaciones , Destete , Animales , Femenino , Ratones
3.
Biol Sex Differ ; 10(1): 45, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484552

RESUMEN

BACKGROUND: Obesity increases the risk for hypertension in both sexes, but the prevalence of hypertension is lower in females than in males until menopause, despite a higher prevalence of obesity in females. We previously demonstrated that angiotensin-converting enzyme 2 (ACE2), which cleaves the vasoconstrictor, angiotensin II (AngII), to generate the vasodilator, angiotensin-(1-7) (Ang-(1-7)), contributes to sex differences in obesity-hypertension. ACE2 expression in adipose tissue was influenced by obesity in a sex-specific manner, with elevated ACE2 expression in obese female mice. Moreover, estrogen stimulated adipose ACE2 expression and reduced obesity-hypertension in females. In this study, we hypothesized that deficiency of adipocyte ACE2 contributes to obesity-hypertension of females. METHODS: We generated a mouse model of adipocyte ACE2 deficiency. Male and female mice with adipocyte ACE2 deficiency or littermate controls were fed a low (LF) or a high fat (HF) diet for 16 weeks and blood pressure was quantified by radiotelemetry. HF-fed mice of each sex and genotype were challenged by an acute AngII injection, and blood pressure response was quantified. To translate these findings to humans, we performed a proof-of-principle study in obese transwomen in which systemic angiotensin peptides and blood pressure were quantified prior to and after 12 weeks of gender-affirming 17ß-estradiol hormone therapy. RESULTS: Adipocyte ACE2 deficiency had no effect on the development of obesity in either sex. HF feeding increased systolic blood pressures (SBP) of wild-type male and female mice compared to LF-fed controls. Adipocyte ACE2 deficiency augmented obesity-induced elevations in SBP in females, but not in males. Obese female, but not obese male mice with adipocyte ACE2 deficiency, had an augmented SBP response to acute AngII challenge. In humans, plasma 17ß-estradiol concentrations increased in obese transwomen administered 17ß-estradiol and correlated positively with plasma Ang-(1-7)/AngII balance, and negatively to SBP after 12 weeks of 17ß-estradiol administration. CONCLUSIONS: Adipocyte ACE2 protects female mice from obesity-hypertension, and reduces the blood pressure response to systemic AngII. In obese transwomen undergoing gender-affirming hormone therapy, 17ß-estradiol administration may regulate blood pressure via the Ang-(1-7)/AngII balance.


Asunto(s)
Adipocitos/metabolismo , Presión Sanguínea/efectos de los fármacos , Obesidad/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Angiotensina I/farmacología , Enzima Convertidora de Angiotensina 2 , Animales , Dieta Alta en Grasa , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Fragmentos de Péptidos/farmacología , Peptidil-Dipeptidasa A/genética , Caracteres Sexuales
4.
PLoS One ; 11(7): e0158579, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27367859

RESUMEN

The increased importance of in vivo diagnostics has posed new demands for imaging technologies. In that regard, there is a need for imaging molecules capable of expanding the applications of current state-of-the-art imaging in vivo diagnostics. To that end, there is a desire for new reporter molecules capable of providing strong signals, are non-toxic, and can be tailored to diagnose or monitor the progression of a number of diseases. Aequorin is a non-toxic photoprotein that can be used as a sensitive marker for bioluminescence in vivo imaging. The sensitivity of aequorin is due to the fact that bioluminescence is a rare phenomenon in nature and, therefore, it does not suffer from autofluorescence, which contributes to background emission. Emission of bioluminescence in the blue-region of the spectrum by aequorin only occurs when calcium, and its luciferin coelenterazine, are bound to the protein and trigger a biochemical reaction that results in light generation. It is this reaction that endows aequorin with unique characteristics, making it ideally suited for a number of applications in bioanalysis and imaging. Herein we report the site-specific incorporation of non-canonical or non-natural amino acids and several coelenterazine analogues, resulting in a catalog of 72 cysteine-free, aequorin variants which expand the potential applications of these photoproteins by providing several red-shifted mutants better suited to use in vivo. In vivo studies in mouse models using the transparent tissue of the eye confirmed the activity of the aequorin variants incorporating L-4-iodophehylalanine and L-4-methoxyphenylalanine after injection into the eye and topical addition of coelenterazine. The signal also remained localized within the eye. This is the first time that aequorin variants incorporating non-canonical amino acids have shown to be active in vivo and useful as reporters in bioluminescence imaging.


Asunto(s)
Aequorina/genética , Aequorina/metabolismo , Sustitución de Aminoácidos , Imagen Molecular , Aequorina/química , Animales , Color , Femenino , Luminiscencia , Ratones , Modelos Moleculares , Conformación Proteica
5.
Methods Mol Biol ; 920: 135-47, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22941601

RESUMEN

The in vitro DNA mismatch repair (MMR) assay is a very useful technique for studying the functions and the mechanisms of the MMR system in genome maintenance. This assay has been effectively used to evaluate MMR proficiency in various tumor cells and to identify the majority of the protein components required for MMR. The procedure for setting up and performing the MMR assay involves mismatch substrate preparation, cell extract preparation, and the repair assay. In this chapter, we describe the detailed methods for this functional in vitro assay.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Técnicas Genéticas , Bacteriófago M13/genética , Núcleo Celular/genética , Roturas del ADN de Cadena Simple , Células HeLa , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA