Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Cancer ; 3(4): 418-436, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35469014

RESUMEN

Patient-derived organoids (PDOs) recapitulate tumor architecture, contain cancer stem cells and have predictive value supporting personalized medicine. Here we describe a large-scale functional screen of dual-targeting bispecific antibodies (bAbs) on a heterogeneous colorectal cancer PDO biobank and paired healthy colonic mucosa samples. More than 500 therapeutic bAbs generated against Wingless-related integration site (WNT) and receptor tyrosine kinase (RTK) targets were functionally evaluated by high-content imaging to capture the complexity of PDO responses. Our drug discovery strategy resulted in the generation of MCLA-158, a bAb that specifically triggers epidermal growth factor receptor degradation in leucine-rich repeat-containing G-protein-coupled receptor 5-positive (LGR5+) cancer stem cells but shows minimal toxicity toward healthy LGR5+ colon stem cells. MCLA-158 exhibits therapeutic properties such as growth inhibition of KRAS-mutant colorectal cancers, blockade of metastasis initiation and suppression of tumor outgrowth in preclinical models for several epithelial cancer types.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Glandulares y Epiteliales , Anticuerpos Biespecíficos/farmacología , Receptores ErbB/metabolismo , Humanos , Imidazoles , Neoplasias Glandulares y Epiteliales/metabolismo , Células Madre Neoplásicas/metabolismo , Organoides , Pirazinas , Receptores Acoplados a Proteínas G/metabolismo
2.
Int J Hyperthermia ; 34(4): 407-414, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28705099

RESUMEN

PURPOSE: Hyperthermia (40-44 °C) effectively sensitises tumours to radiotherapy by locally altering tumour biology. One of the effects of heat at the cellular level is inhibition of DNA repair by homologous recombination via degradation of the BRCA2-protein. This suggests that hyperthermia can expand the group of patients that benefit from PARP-inhibitors, a drug exploiting homologous recombination deficiency. Here, we explore whether the molecular mechanisms that cause heat-mediated degradation of BRCA2 are conserved in cell lines from various origins and, most importantly, whether, BRCA2 protein levels can be attenuated by heat in freshly biopted human tumours. EXPERIMENTAL DESIGN: Cells from four established cell lines and from freshly biopsied material of cervical (15), head- and neck (9) or bladder tumours (27) were heated to 42 °C for 60 min ex vivo. In vivo hyperthermia was studied by taking two biopsies of the same breast or cervical tumour: one before and one after treatment. BRCA2 protein levels were measured by immunoblotting. RESULTS: We found decreased BRCA2-levels after hyperthermia in all established cell lines and in 91% of all tumours treated ex vivo. For tumours treated with hyperthermia in vivo, technical issues and intra-tumour heterogeneity prevented obtaining interpretable results. CONCLUSIONS: This study demonstrates that heat-mediated degradation of BRCA2 occurs in tumour material directly derived from patients. Although BRCA2-degradation may not be a practical biomarker for heat deposition in situ, it does suggest that application of hyperthermia could be an effective method to expand the patient group that could benefit from PARP-inhibitors.


Asunto(s)
Proteína BRCA2/metabolismo , Hipertermia Inducida , Neoplasias/metabolismo , Neoplasias/terapia , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Línea Celular Tumoral , Terapia Combinada , Femenino , Calor , Humanos , Proteolisis
3.
PLoS One ; 12(2): e0170762, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28234898

RESUMEN

The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Biosíntesis de Proteínas/efectos de la radiación , Proteoma/efectos de la radiación , Proteómica , Animales , Línea Celular , Teléfono Celular , Humanos , Ratones , Transcriptoma/efectos de la radiación , Tecnología Inalámbrica
4.
Int J Hyperthermia ; 28(6): 509-17, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22834701

RESUMEN

Local hyperthermia is an effective treatment modality to augment radio- and chemotherapy-based anti-cancer treatments. Although the effect of hyperthermia is pleotropic, recent experiments revealed that homologous recombination, a pathway of DNA repair, is directly inhibited by hyperthermia. The hyperthermia-induced DNA repair deficiency is enhanced by inhibitors of the cellular heat-shock response. Taken together, these results provide the rationale for the development of novel anti-cancer therapies that combine hyperthermia-induced homologous recombination deficiency with the systemic administration of drugs that specifically affect the viability of homologous recombination deficient cells and/or inhibit the heat-shock response, to locally sensitise cancer cells to DNA damaging agents.


Asunto(s)
Trastornos por Deficiencias en la Reparación del ADN/etiología , Reparación del ADN , Hipertermia Inducida , Roturas del ADN de Doble Cadena/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/fisiología , Respuesta al Choque Térmico , Recombinación Homóloga/fisiología , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas
5.
DNA Repair (Amst) ; 10(11): 1095-105, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21885354

RESUMEN

Ultraviolet (UV) radiation-induced DNA lesions can be efficiently repaired by nucleotide excision repair (NER). However, NER is less effective during replication of UV-damaged chromosomes. In contrast, translesion DNA synthesis (TLS) and homologous recombination (HR) are capable of dealing with lesions in replicating DNA. The core HR protein in mammalian cells is the strand exchange protein RAD51, which is aided by numerous proteins, including RAD54. We used RAD54 as a cellular marker for HR to study the response of mammalian embryonic stem (ES) cells to UV irradiation. In contrast to yeast, ES cells lacking RAD54 are not UV sensitive. Here we show that the requirement for mammalian RAD54 is masked by active NER. By genetically inactivating NER and HR through disruption of the Xpa and Rad54 genes, respectively, we demonstrate the contribution of HR to chromosomal integrity upon UV irradiation. We demonstrate using chromosome fiber analysis at the individual replication fork level, that HR activity is important for the restart of DNA replication after induction of DNA damage by UV-light in NER-deficient cells. Furthermore, our data reveal RAD54-dependent and -independent contributions of HR to the cellular sensitivity to UV-light, and they uncover that RAD54 can compensate for the loss of TLS polymerase η with regard to UV-light sensitivity. In conclusion, we show that HR is important for the progression of UV-stalled replication forks in ES cells, and that protection of the fork is an interplay between HR and TLS.


Asunto(s)
Recombinación Homóloga/efectos de la radiación , Proteínas Nucleares/metabolismo , Rayos Ultravioleta , Animales , Supervivencia Celular/efectos de la radiación , Aberraciones Cromosómicas/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Helicasas , Replicación del ADN , Proteínas de Unión al ADN , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/efectos de la radiación , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Transporte de Proteínas/efectos de la radiación , Transducción de Señal/efectos de la radiación
6.
Proc Natl Acad Sci U S A ; 108(24): 9851-6, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21555554

RESUMEN

Defective homologous recombination (HR) DNA repair imposed by BRCA1 or BRCA2 deficiency sensitizes cells to poly (ADP-ribose) polymerase (PARP)-1 inhibition and is currently exploited in clinical treatment of HR-deficient tumors. Here we show that mild hyperthermia (41-42.5 °C) induces degradation of BRCA2 and inhibits HR. We demonstrate that hyperthermia can be used to sensitize innately HR-proficient tumor cells to PARP-1 inhibitors and that this effect can be enhanced by heat shock protein inhibition. Our results, obtained from cell lines and in vivo tumor models, enable the design of unique therapeutic strategies involving localized on-demand induction of HR deficiency, an approach that we term induced synthetic lethality.


Asunto(s)
Proteína BRCA2/metabolismo , Calor , Poli(ADP-Ribosa) Polimerasas/metabolismo , Recombinación Genética/genética , Animales , Proteína BRCA2/genética , Benzoquinonas/farmacología , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/efectos de la radiación , Femenino , Células HeLa , Humanos , Immunoblotting , Lactamas Macrocíclicas/farmacología , Ratones , Ratones Desnudos , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética , Quinazolinas/farmacología , Interferencia de ARN , Ratas , Recombinación Genética/efectos de los fármacos , Recombinación Genética/efectos de la radiación , Trasplante Heterólogo , Carga Tumoral/efectos de los fármacos
7.
J Cell Biol ; 192(5): 735-50, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21357745

RESUMEN

Rad54, a member of the SWI/SNF protein family of DNA-dependent ATPases, repairs DNA double-strand breaks (DSBs) through homologous recombination. Here we demonstrate that Rad54 is required for the timely accumulation of the homologous recombination proteins Rad51 and Brca2 at DSBs. Because replication protein A and Nbs1 accumulation is not affected by Rad54 depletion, Rad54 is downstream of DSB resection. Rad54-mediated Rad51 accumulation does not require Rad54's ATPase activity. Thus, our experiments demonstrate that SWI/SNF proteins may have functions independent of their ATPase activity. However, quantitative real-time analysis of Rad54 focus formation indicates that Rad54's ATPase activity is required for the disassociation of Rad54 from DNA and Rad54 turnover at DSBs. Although the non-DNA-bound fraction of Rad54 reversibly interacts with a focus, independent of its ATPase status, the DNA-bound fraction is immobilized in the absence of ATP hydrolysis by Rad54. Finally, we show that ATP hydrolysis by Rad54 is required for the redistribution of DSB repair sites within the nucleus.


Asunto(s)
Adenosina Trifosfato/fisiología , ADN Helicasas/fisiología , Reparación del ADN , Genoma , Proteínas Nucleares/fisiología , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Roturas del ADN de Doble Cadena , ADN Helicasas/análisis , ADN Helicasas/genética , Proteínas Fluorescentes Verdes/análisis , Espacio Intranuclear/metabolismo , Espacio Intranuclear/ultraestructura , Ratones , Proteínas Nucleares/análisis , Proteínas Nucleares/genética , Recombinasa Rad51/análisis , Recombinasa Rad51/metabolismo , Recombinasa Rad51/fisiología , Recombinación Genética
8.
Mol Cell ; 41(5): 529-42, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21362549

RESUMEN

The cellular response to DNA double-strand breaks (DSBs) is mobilized by the protein kinase ATM, which phosphorylates key players in the DNA damage response (DDR) network. A major question is how ATM controls DSB repair. Optimal repair requires chromatin relaxation at damaged sites. Chromatin reorganization is coupled to dynamic alterations in histone posttranslational modifications. Here, we show that in human cells, DSBs induce monoubiquitylation of histone H2B, a modification that is associated in undamaged cells with transcription elongation. We find that this process relies on recruitment to DSB sites and ATM-dependent phosphorylation of the responsible E3 ubiquitin ligase: the RNF20-RNF40 heterodimer. H2B monoubiquitylation is required for timely recruitment of players in the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair-and optimal repair via both pathways. Our data and previous data suggest a two-stage model for chromatin decondensation that facilitates DSB repair.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/química , Proteínas de la Ataxia Telangiectasia Mutada , Cromatina/química , Cromatina/metabolismo , Ensayo Cometa/métodos , Células HeLa , Histonas/química , Humanos , Cinética , Fosforilación , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Recombinación Genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Mol Cell ; 35(1): 116-27, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19595721

RESUMEN

Budding yeast Slx4 interacts with the structure-specific endonuclease Slx1 to ensure completion of ribosomal DNA replication. Slx4 also interacts with the Rad1-Rad10 endonuclease to control cleavage of 3' flaps during repair of double-strand breaks (DSBs). Here we describe the identification of human SLX4, a scaffold for DNA repair nucleases XPF-ERCC1, MUS81-EME1, and SLX1. SLX4 immunoprecipitates show SLX1-dependent nuclease activity toward Holliday junctions and MUS81-dependent activity toward other branched DNA structures. Furthermore, SLX4 enhances the nuclease activity of SLX1, MUS81, and XPF. Consistent with a role in processing recombination intermediates, cells depleted of SLX4 are hypersensitive to genotoxins that cause DSBs and show defects in the resolution of interstrand crosslink-induced DSBs. Depletion of SLX4 causes a decrease in DSB-induced homologous recombination. These data show that SLX4 is a regulator of structure-specific nucleases and that SLX4 and SLX1 are important regulators of genome stability in human cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Endonucleasas/metabolismo , Recombinasas/metabolismo , Western Blotting , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Unión Proteica , ARN Interferente Pequeño/genética , Recombinasas/genética , Transfección , Técnicas del Sistema de Dos Híbridos
10.
Exp Cell Res ; 312(14): 2660-5, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16859683

RESUMEN

DNA replication is a fragile process, since unavoidable lesions in the template DNA cause replicative polymerases to stall, posing a serious threat to genome integrity. Homologous recombination, translesion DNA synthesis and de novo reinitiation of DNA synthesis ensure robust replication by navigating it passed damaged DNA. In this review, we highlight the relationship between these three processes.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Recombinación Genética , Animales , Reparación del ADN , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA