Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Commun ; 13(1): 2918, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614044

RESUMEN

The past few years have witnessed the rapid development of liquid metal dealloying to fabricate nano-/meso-scale porous and composite structures with ultra-high interfacial area for diverse materials applications. However, this method currently has two important limitations. First, it produces bicontinuous structures with high-genus topologies for a limited range of alloy compositions. Second, structures have a large ligament size due to substantial coarsening during dealloying at high temperature. Here we demonstrate computationally and experimentally that those limitations can be overcome by adding to the metallic melt an element that promotes high-genus topologies by limiting the leakage of the immiscible element during dealloying. We further interpret this finding by showing that bulk diffusive transport of the immiscible element in the liquid melt strongly influences the evolution of the solid fraction and topology of the structure during dealloying. The results shed light on fundamental differences in liquid metal and electrochemical dealloying and establish a new approach to produce liquid-metal-dealloyed structures with desired size and topologies.

2.
Nat Commun ; 9(1): 276, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348401

RESUMEN

Three-dimensional bicontinuous open (3DBO) nanoporosity has been recognized as an important nanoarchitecture for catalysis, sensing, and energy storage. Dealloying, i.e., selectively removing a component from an alloy, is an efficient way to fabricate nanoporous materials. However, current electrochemical and liquid-metal dealloying methods can only be applied to a limited number of alloys and usually require an etching process with chemical waste. Here, we report a green and universal approach, vapor-phase dealloying, to fabricate nanoporous materials by utilizing the vapor pressure difference between constituent elements in an alloy to selectively remove a component with a high partial vapor pressure for 3DBO nanoporosity. We demonstrate that extensive elements, regardless of chemical activity, can be fabricated as nanoporous materials with tunable pore sizes. Importantly, the evaporated components can be fully recovered. This environmentally friendly dealloying method paves a way to fabricate 3DBO nanoporous materials for a wide range of structural and functional applications.

3.
Nat Commun ; 8(1): 1449, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29129907

RESUMEN

The selection of oxide materials for catalyzing the oxygen evolution reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity-a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the activity-stability factor. On the basis of this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factor of ~30 improvement in activity-stability factor relative to conventional iridium-based oxide materials, and an ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. We propose that the activity-stability factor is a key "metric" for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.

4.
J Am Chem Soc ; 139(10): 3663-3668, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28211275

RESUMEN

Electroreduction of small molecules in aqueous solution often competes with the hydrogen evolution reaction (HER), especially if the reaction is driven even moderately hard using a large overpotential. Here, the oxygen reduction reaction (ORR) was studied under proton diffusion-limited conditions in slightly acidic electrolytes: a model system to study the relative transport kinetics of protons and reactants to an electrocatalyst and the relationship between transport and catalytic performance. Using dealloyed nanoporous nickel-platinum (np-NiPt) electrodes, we find the hydrogen evolution reaction can be completely suppressed even at high overpotentials (-400 mV vs RHE). In addition, the mechanism of oxygen reduction can be changed by using buffered versus unbuffered solutions, suggesting the reaction selectivity is associated with a transient rise (or lack thereof) in the interface pH at the np-NiPt surface. Independently controlling reactant transport to electrocatalyst surfaces at high overpotentials exhibited a surprisingly rich phenomenology that may offer a generalizable strategy to increase activity and selectivity during electroreduction reactions.

5.
Adv Mater ; 28(9): 1753-9, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26676880

RESUMEN

The intricate 3D geometric shape and surface atomic structure of nanoporous gold catalysts are investigated using aberration-corrected scanning transmission electron microscopy in combination with discrete tomography. The real-space 3D atomic configurations illustrate geometrically necessary surface defects on the curved surface of the NPG, offering atomic insights into the catalysis of the nanoporous catalyst.

6.
Nat Commun ; 6: 8887, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26582248

RESUMEN

Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

7.
Nano Lett ; 14(5): 2569-77, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24689459

RESUMEN

Dealloying is currently used to tailor the morphology and composition of nanoparticles and bulk solids for a variety of applications including catalysis, energy storage, sensing, actuation, supercapacitors, and radiation damage resistant materials. The known morphologies, which evolve on dealloying of nanoparticles, include core-shell, hollow core-shell, and porous nanoparticles. Here we present results examining the fixed voltage dealloying of AgAu alloy particles in the size range of 2-6 and 20-55 nm. High-angle annular dark-field scanning transmission electron microcopy, energy dispersive, and electron energy loss spectroscopy are used to characterize the size, morphology, and composition of the dealloyed nanoparticles. Our results demonstrate that above the potential corresponding to Ag(+)/Ag equilibrium only core-shell structures evolve in the 2-6 nm diameter particles. Dealloying of the 20-55 nm particles results and in the formation of porous structures analogous to the behavior observed for the corresponding bulk alloy. A statistical analysis that includes the composition and particle size distributions characterizing the larger particles demonstrates that the formation of porous nanoparticles occurs at a well-defined thermodynamic critical potential.

8.
Langmuir ; 29(23): 6876-83, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23675906

RESUMEN

Crystal surfaces provide physical interfaces between the geosphere and biosphere. It follows that the arrangement of atoms at the surfaces of crystals profoundly influences biological components at many levels, from cells through biopolymers to single organic molecules. Many studies have focused on the crystal-molecule interface in water using large, flat single crystals. However, little is known about atomic-scale surface structures of the nanometer- to micrometer-sized crystals of simple metal oxides typically used in batch adsorption experiments under conditions relevant to biogeochemistry and the origins of life. Here, we present atomic-resolution microscopy data with unprecedented detail of the circumferences of nanosized rutile (α-TiO2) crystals previously used in studies of the adsorption of protons, cations, and amino acids. The data suggest that one-third of the {110} faces, the largest faces on individual crystals, consist of steps at the atomic scale. The steps have the orientation to provide undercoordinated Ti atoms of the type and abundance for adsorption of amino acids as inferred from previous surface complexation modeling of batch adsorption data. A remarkably uniform pattern of step proportions emerges: the step proportions are independent of surface roughness and reflect their relative surface energies. Consequently, the external morphology of rutile nanometer- to micrometer-sized crystals imaged at the coarse scale of scanning electron microscope images is not an accurate indicator of the atomic smoothness or of the proportions of the steps present. Overall, our data strongly suggest that amino acids attach at these steps on the {110} surfaces of rutile.


Asunto(s)
Ácido Glutámico/química , Titanio/química , Adsorción , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Propiedades de Superficie
9.
Nat Mater ; 11(9): 775-80, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22886067

RESUMEN

Distinct from inert bulk gold, nanoparticulate gold has been found to possess remarkable catalytic activity towards oxidation reactions. The catalytic performance of nanoparticulate gold strongly depends on size and support, and catalytic activity usually cannot be observed at characteristic sizes larger than 5 nm. Interestingly, significant catalytic activity can be retained in dealloyed nanoporous gold (NPG) even when its feature lengths are larger than 30 nm. Here we report atomic insights of the NPG catalysis, characterized by spherical-aberration-corrected transmission electron microscopy (TEM) and environmental TEM. A high density of atomic steps and kinks is observed on the curved surfaces of NPG, comparable to 3-5 nm nanoparticles, which are stabilized by hyperboloid-like gold ligaments. In situ TEM observations provide compelling evidence that the surface defects are active sites for the catalytic oxidation of CO and residual Ag stabilizes the atomic steps by suppressing {111} faceting kinetics.

10.
J Am Chem Soc ; 134(20): 8633-45, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22533802

RESUMEN

We present a comprehensive experimental study of the formation and activity of dealloyed nanoporous Ni/Pt alloy nanoparticles for the cathodic oxygen reduction reaction. By addressing the kinetics of nucleation during solvothermal synthesis we developed a method to control the size and composition of Ni/Pt alloy nanoparticles over a broad range while maintaining an adequate size distribution. Electrochemical dealloying of these size-controlled nanoparticles was used to explore conditions in which hierarchical nanoporosity within nanoparticles can evolve. Our results show that in order to evolve fully formed porosity, particles must have a minimum diameter of ∼15 nm, a result consistent with the surface kinetic processes occurring during dealloying. Nanoporous nanoparticles possess ligaments and voids with diameters of approximately 2 nm, high surface area/mass ratios usually associated with much smaller particles, and a composition consistent with a Pt-skeleton covering a Ni/Pt alloy core. Electrochemical measurements show that the mass activity for the oxygen reduction reaction using carbon-supported nanoporous Ni/Pt nanoparticles is nearly four times that of commercial Pt/C catalyst and even exceeds that of comparable nonporous Pt-skeleton Ni/Pt alloy nanoparticles.

11.
Langmuir ; 25(16): 9596-604, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19624109

RESUMEN

The cyclic voltammetry characterizing underpotential deposition (UPD) of Ag onto Au(111) varies in the literature with respect to the characteristic UPD peaks in both position and number. Rooryck et al. (1) confirmed that the discrepancy in terms of peak position, specifically the initial UPD to which a third of a monolayer of deposition is attributed, is due to a variation in the quality of the surface. Clean, smooth Au(111) surfaces yield a peak position of 0.53 V vs Ag0/Ag+, while rough disordered surfaces yield a peak position of 0.61 V vs Ag0/Ag+. Repetitive potential cycling in the UPD region resulted in a gradual shift in peak position, with time as the deposited Ag alloyed with, and was stripped from the surface leaving vacancies. We provide a methodology for tracking the rate at which UPD Ag alloys with the Au(111) surface without the use of continuous potential cycling. A simple kinetic model is developed for the surface alloying of Ag on Au(111), from which we extract an activation barrier and attempt frequency for this process. Notably, we introduce a novel technique for the inexpensive parallel fabrication of Au(111) single crystals that allowed us to build statistics and ensured reproducibility of our data.

12.
Plasmonics ; 3(1): 13-20, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19816537

RESUMEN

Previously, we have reported that nanoporous gold (NPG) films prepared by a chemical dealloying method have distinctive plasmonic properties, i.e., they can simultaneously support localized and propagating surface plasmon resonance modes (l-SPR and p-SPR, respectively). In this study, the plasmonic properties of NPG are quantified through direct comparison with thermally evaporated gold (EG) films. Cyclic voltammetry and electrochemical impedance spectroscopy experiments reveal that the NPG films have 4-8.5 times more accessible surface area than EG films. Assemblies of streptavidin-latex beads generate p-SPR responses on both NPG and EG films that correlate well with the bead density obtained from scanning electron microscopy (SEM) images. A layer-by-layer assembly experiment on NPG involving biotinylated anti-avidin IgG and avidin, studied by l-SPR and SEM, shows that the l-SPR signal is directly linked to the accessibility of the interior of the NPG porosity, an adjustable experimental parameter that can be set by the dealloying condition and time. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11468-007-9048-5) contains supplementary material, which is available to authorized users.

13.
Anal Chem ; 78(20): 7346-50, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17037943

RESUMEN

Materials multifunctionality for optical sensing of adsorbates has obvious advantages-in addition to the potential for greater sensitivity, the different length scales associated with a variety of optical phenomena allow a greater variety of adsorption characteristics to be examined. Here, we show that ultrathin (approximately 100 nm) nanoporous gold membranes possess features of both planar metal films that exhibit propagating SPR excitations and nanofeatured metals that exhibit localized SPR excitations. This is the first report of such multifunctionality in an optically active metal. We give illustrative examples of using this material to probe biorecognition reactions and to probe the structure evolution of a layer-by-layer deposition of charged dendrimers. Our results are consistent with the very different lengths of the tail of the evanescent field decays associated with each of these plasmon excitation modes.

14.
Langmuir ; 22(2): 582-9, 2006 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-16401105

RESUMEN

The influence of nanoscale out-of-plane roughness on the ordering of submicron spheres during evaporative deposition from colloidal suspension was examined using shallow corrugated substrates possessing optical wavelengths and nanoscale amplitude. Under conditions in which spheres were embedded in a liquid layer with thickness on the order of the sphere diameter, it was observed that the spheres overwhelmingly deposited in the valleys of the surface corrugations rather than on their peaks. This behavior persisted to surprisingly shallow corrugation amplitudes, sometimes 100 times smaller than the sphere diameter. An analysis of the capillary forces on the spheres explains this behavior and also yields a critical corrugation amplitude below which a substrate will appear "flat" to depositing spheres. The observation that substrate features significantly smaller than the sphere diameter can influence deposition morphology may lead to simple methods to create large domains of order in colloidal crystals.

15.
Phys Rev Lett ; 95(5): 056101, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-16090890

RESUMEN

The surface of high fluence ion-sputtered Si(111) was found to exhibit a rich variety of transient one- and two-dimensional topographies that may be exploited as tunable self-organized arrays of nanostructures. Such transient effects are only partially described by analytical models of sputter patterning. However, a discrete atom kinetic Monte Carlo simulation model incorporating curvature-dependent sputtering and surface diffusion reproduces many aspects of the transient morphological evolution, and clarifies the minimal model of sputter patterning.

16.
Angew Chem Int Ed Engl ; 44(26): 4002-6, 2005 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-15900532
17.
J Am Chem Soc ; 126(22): 6876-7, 2004 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-15174851

RESUMEN

We describe the fabrication, characterization, and applications of ultrathin, free-standing mesoporous metal membranes uniformly decorated with catalytically active nanoparticles. Platinum-plated nanoporous gold leaf (Pt-NPG) made by confining a plating reaction to occur within the pores of dealloyed silver/gold leaf is 100 nm thick and contains an extremely high, uniform dispersion of 3 nm diameter catalytic particles. This nanostructured composite holds promise as a prototypical member of a new class of fuel cell electrodes, showing good electrocatalytic performance at low platinum loading (less than 0.05 mg cm-2), while also maintaining long-term stability against coarsening and aggregation of catalytic nanoparticles.

18.
J Am Chem Soc ; 125(26): 7772-3, 2003 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-12822974

RESUMEN

A simple two-step dealloying strategy is described to make free-standing metal membranes with hierarchical porous architecture. This structure has a bimodal pore size distribution composed of large porosity channels and small porosity channel walls, where each pore size can be tailored independently of the others. A new gas-phase electroless plating technique was also developed here that could be used to uniformly fill porous structures with pore size as small as 10 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA