RESUMEN
PURPOSE: Current therapy strategies still provide only limited success in the treatment of glioblastoma, the most frequent primary brain tumor in adults. In addition to the characterization of the tumor microenvironment, global changes in the brain of patients with glioblastoma have been described. However, the impact and molecular signature of neuroinflammation distant of the primary tumor site have not yet been thoroughly elucidated. EXPERIMENTAL DESIGN: We performed translocator protein (TSPO)-PET in patients with newly diagnosed glioblastoma (n = 41), astrocytoma WHO grade 2 (n = 7), and healthy controls (n = 20) and compared TSPO-PET signals of the non-lesion (i.e., contralateral) hemisphere. Back-translation into syngeneic SB28 glioblastoma mice was used to characterize Pet alterations on a cellular level. Ultimately, multiplex gene expression analyses served to profile immune cells in remote brain. RESULTS: Our study revealed elevated TSPO-PET signals in contralateral hemispheres of patients with newly diagnosed glioblastoma compared to healthy controls. Contralateral TSPO was associated with persisting epileptic seizures and shorter overall survival independent of the tumor phenotype. Back-translation into syngeneic glioblastoma mice pinpointed myeloid cells as the predominant source of contralateral TSPO-PET signal increases and identified a complex immune signature characterized by myeloid cell activation and immunosuppression in distant brain regions. CONCLUSIONS: Neuroinflammation within the contralateral hemisphere can be detected with TSPO-PET imaging and associates with poor outcome in patients with newly diagnosed glioblastoma. The molecular signature of remote neuroinflammation promotes the evaluation of immunomodulatory strategies in patients with detrimental whole brain inflammation as reflected by high TSPO expression.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Enfermedades Neuroinflamatorias , Receptores de GABA , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/mortalidad , Humanos , Animales , Ratones , Receptores de GABA/metabolismo , Receptores de GABA/genética , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/diagnóstico , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/diagnóstico , Adulto , Tomografía de Emisión de Positrones/métodos , Anciano , Pronóstico , Microambiente Tumoral/inmunología , Modelos Animales de EnfermedadRESUMEN
To comprehensively understand tissue and organism physiology and pathophysiology, it is essential to create complete three-dimensional (3D) cellular maps. These maps require structural data, such as the 3D configuration and positioning of tissues and cells, and molecular data on the constitution of each cell, spanning from the DNA sequence to protein expression. While single-cell transcriptomics is illuminating the cellular and molecular diversity across species and tissues, the 3D spatial context of these molecular data is often overlooked. Here, I discuss emerging 3D tissue histology techniques that add the missing third spatial dimension to biomedical research. Through innovations in tissue-clearing chemistry, labeling and volumetric imaging that enhance 3D reconstructions and their synergy with molecular techniques, these technologies will provide detailed blueprints of entire organs or organisms at the cellular level. Machine learning, especially deep learning, will be essential for extracting meaningful insights from the vast data. Further development of integrated structural, molecular and computational methods will unlock the full potential of next-generation 3D histology.
Asunto(s)
Imagenología Tridimensional , Imagenología Tridimensional/métodos , Humanos , Animales , Aprendizaje Profundo , Técnicas Histológicas/métodos , Análisis de la Célula Individual/métodos , Inteligencia ArtificialRESUMEN
Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.
Asunto(s)
Encéfalo , Aprendizaje Profundo , Realidad Virtual , Animales , Encéfalo/diagnóstico por imagen , Ratones , Neuronas , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Proteínas Proto-Oncogénicas c-fos/metabolismo , HumanosRESUMEN
Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.
Asunto(s)
Células Endoteliales , Proteómica , Ratones , Animales , Células Endoteliales/metabolismo , Proteómica/métodos , Encéfalo/metabolismo , Endotelio/metabolismo , Apolipoproteínas E/metabolismoRESUMEN
In 2015, we launched the mesoSPIM initiative, an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of such microscopes. Here, we introduce the next-generation mesoSPIM ("Benchtop") with a significantly increased field of view, improved resolution, higher throughput, more affordable cost, and simpler assembly compared to the original version. We develop an optical method for testing detection objectives that enables us to select objectives optimal for light-sheet imaging with large-sensor cameras. The improved mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, magnification up to 20×, and supports sample sizes ranging from sub-mm up to several centimeters while being compatible with multiple clearing techniques. The microscope serves a broad range of applications in neuroscience, developmental biology, pathology, and even physics.
Asunto(s)
Microscopía , Neurociencias , Microscopía/métodosRESUMEN
Whole-body imaging techniques play a vital role in exploring the interplay of physiological systems in maintaining health and driving disease. We introduce wildDISCO, a new approach for whole-body immunolabeling, optical clearing and imaging in mice, circumventing the need for transgenic reporter animals or nanobody labeling and so overcoming existing technical limitations. We identified heptakis(2,6-di-O-methyl)-ß-cyclodextrin as a potent enhancer of cholesterol extraction and membrane permeabilization, enabling deep, homogeneous penetration of standard antibodies without aggregation. WildDISCO facilitates imaging of peripheral nervous systems, lymphatic vessels and immune cells in whole mice at cellular resolution by labeling diverse endogenous proteins. Additionally, we examined rare proliferating cells and the effects of biological perturbations, as demonstrated in germ-free mice. We applied wildDISCO to map tertiary lymphoid structures in the context of breast cancer, considering both primary tumor and metastases throughout the mouse body. An atlas of high-resolution images showcasing mouse nervous, lymphatic and vascular systems is accessible at http://discotechnologies.org/wildDISCO/atlas/index.php .
Asunto(s)
Imagenología Tridimensional , Inmunoglobulina G , Ratones , AnimalesRESUMEN
Various cellular sources hamper interpretation of positron emission tomography (PET) biomarkers in the tumor microenvironment (TME). We developed an approach of immunomagnetic cell sorting after in vivo radiotracer injection (scRadiotracing) with three-dimensional (3D) histology to dissect the cellular allocation of PET signals in the TME. In mice with implanted glioblastoma, translocator protein (TSPO) radiotracer uptake per tumor cell was higher compared to tumor-associated microglia/macrophages (TAMs), validated by protein levels. Translation of in vitro scRadiotracing to patients with glioma immediately after tumor resection confirmed higher single-cell TSPO tracer uptake of tumor cells compared to immune cells. Across species, cellular radiotracer uptake explained the heterogeneity of individual TSPO-PET signals. In consideration of cellular tracer uptake and cell type abundance, tumor cells were the main contributor to TSPO enrichment in glioblastoma; however, proteomics identified potential PET targets highly specific for TAMs. Combining cellular tracer uptake measures with 3D histology facilitates precise allocation of PET signals and serves to validate emerging novel TAM-specific radioligands.
Asunto(s)
Glioblastoma , Glioma , Humanos , Ratones , Animales , Glioblastoma/diagnóstico por imagen , Glioblastoma/metabolismo , Microambiente Tumoral , Glioma/patología , Tomografía de Emisión de Positrones/métodos , Microglía/metabolismo , Proteínas Portadoras/metabolismo , Receptores de GABA/metabolismoRESUMEN
Disruption of the physiologic sleep-wake cycle and low melatonin levels frequently accompany cardiac disease, yet the underlying mechanism has remained enigmatic. Immunostaining of sympathetic axons in optically cleared pineal glands from humans and mice with cardiac disease revealed their substantial denervation compared with controls. Spatial, single-cell, nuclear, and bulk RNA sequencing traced this defect back to the superior cervical ganglia (SCG), which responded to cardiac disease with accumulation of inflammatory macrophages, fibrosis, and the selective loss of pineal gland-innervating neurons. Depletion of macrophages in the SCG prevented disease-associated denervation of the pineal gland and restored physiological melatonin secretion. Our data identify the mechanism by which diurnal rhythmicity in cardiac disease is disturbed and suggest a target for therapeutic intervention.
Asunto(s)
Ritmo Circadiano , Cardiopatías , Macrófagos , Melatonina , Glándula Pineal , Trastornos del Sueño del Ritmo Circadiano , Ganglio Cervical Superior , Animales , Humanos , Ratones , Cardiopatías/fisiopatología , Melatonina/metabolismo , Glándula Pineal/patología , Glándula Pineal/fisiopatología , Sueño , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Ganglio Cervical Superior/patología , Ganglio Cervical Superior/fisiopatología , Macrófagos/inmunología , FibrosisRESUMEN
Earlier studies based on 2-photon imaging have shown that glymphatic cerebrospinal fluid (CSF) transport is regulated by the sleep-wake cycle. To examine this association, we used 3DISCO whole-body tissue clearing to map CSF tracer distribution in awake, sleeping and ketamine-xylazine anesthetized mice. The results of our analysis showed that CSF tracers entered the brain to a significantly larger extent in natural sleep or ketamine-xylazine anesthesia than in wakefulness. Furthermore, awake mice showed preferential transport of CSF tracers in the rostro-caudal direction towards the cervical and spinal cord lymphatic vessels, and hence to venous circulation and excretion by the kidneys. The study extends the current literature by showing that CSF dynamics on the whole-body scale is controlled by the state of brain activity.
Asunto(s)
Ketamina , Ratones , Animales , Xilazina , Encéfalo , Sueño , Transporte BiológicoRESUMEN
Homeostatic and pathological phenomena often affect multiple organs across the whole organism. Tissue clearing methods, together with recent advances in microscopy, have made holistic examinations of biological samples feasible. Here, we report the detailed protocol for nanobody(VHH)-boosted 3D imaging of solvent-cleared organs (vDISCO), a pressure-driven, nanobody-based whole-body immunolabeling and clearing method that renders whole mice transparent in 3 weeks, consistently enhancing the signal of fluorescent proteins, stabilizing them for years. This allows the reliable detection and quantification of fluorescent signal in intact rodents enabling the analysis of an entire body at cellular resolution. Here, we show the high versatility of vDISCO applied to boost the fluorescence signal of genetically expressed reporters and clear multiple dissected organs and tissues, as well as how to image processed samples using multiple fluorescence microscopy systems. The entire protocol is accessible to laboratories with limited expertise in tissue clearing. In addition to its applications in obtaining a whole-mouse neuronal projection map, detecting single-cell metastases in whole mice and identifying previously undescribed anatomical structures, we further show the visualization of the entire mouse lymphatic system, the application for virus tracing and the visualization of all pericytes in the brain. Taken together, our vDISCO pipeline allows systematic and comprehensive studies of cellular phenomena and connectivity in whole bodies.
Asunto(s)
Encéfalo , Imagenología Tridimensional , Ratones , Animales , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Solventes/química , Neuritas , ColorantesRESUMEN
In 2015, we launched the mesoSPIM initiative (www.mesospim.org), an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of light-sheet microscopy. Here, we introduce the next-generation mesoSPIM ("Benchtop") with significantly increased field of view, improved resolution, higher throughput, more affordable cost and simpler assembly compared to the original version. We developed a new method for testing objectives, enabling us to select detection objectives optimal for light-sheet imaging with large-sensor sCMOS cameras. The new mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, a magnification up to 20x, and supports sample sizes ranging from sub-mm up to several centimetres, while being compatible with multiple clearing techniques. The new microscope serves a broad range of applications in neuroscience, developmental biology, and even physics.
RESUMEN
Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological and pathological states. However, methods for molecular analysis of large biological specimens imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in a mouse model of Alzheimer's disease. DISCO-bot robotic sample extraction enabled us to study the regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbiased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex diseases. VIDEO ABSTRACT.
Asunto(s)
Enfermedad de Alzheimer , Proteoma , Ratones , Humanos , Animales , Proteoma/análisis , Proteómica/métodos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Espectrometría de Masas , Placa AmiloideRESUMEN
Cerebellar dysfunction is commonly observed following traumatic brain injury (TBI). While direct impact to the cerebellum by TBI is rare, cerebellar pathology may be caused by indirect injury via cortico-cerebellar pathways. To address the hypothesis that degeneration of Purkinje cells (PCs), which constitute the sole output from the cerebellum, is linked to long-range axonal injury and demyelination, we used the central fluid percussion injury (cFPI) model of widespread traumatic axonal injury in mice. Compared to controls, TBI resulted in early PC loss accompanied by alterations in the size of pinceau synapses and levels of non-phosphorylated neurofilament in PCs. A combination of vDISCO tissue clearing technique and immunohistochemistry for vesicular glutamate transporter type 2 show that diffuse TBI decreased mossy and climbing fiber synapses on PCs. At 2 days post-injury, numerous axonal varicosities were found in the cerebellum supported by fractional anisotropy measurements using 9.4 T MRI. The disruption and demyelination of the cortico-cerebellar circuits was associated with poor performance of brain-injured mice in the beam-walk test. Despite a lack of direct input from the injury site to the cerebellum, these findings argue for novel long-range mechanisms causing Purkinje cell injury that likely contribute to cerebellar dysfunction after TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades Desmielinizantes , Animales , Axones/patología , Lesiones Traumáticas del Encéfalo/patología , Cerebelo/patología , Enfermedades Desmielinizantes/patología , Ratones , Células de Purkinje/patologíaRESUMEN
Advances in tissue labeling and clearing methods include improvement of tissue transparency, better preservation of fluorescence signal, compatibility with immunostaining and large sample volumes. However, as existing methods share the common limitation that they can only be applied to human tissue slices, rendering intact human organs transparent remains a challenge. Here, we describe experimental details of the small-micelle-mediated human organ efficient clearing and labeling (SHANEL) pipeline, which can be applied for cellular mapping of intact human organs. We have successfully cleared multiple human organs, including kidney, pancreas, heart, lung, spleen and brain, as well as hard tissue like skull. We also describe an advanced volumetric imaging system using a commercial light-sheet fluorescence microscope that can accommodate most human organs and a pipeline for whole-organ imaging and visualization. The complete experimental process of labeling and clearing whole human organs takes months and the analysis process takes several weeks, depending on the organ types and sizes.
Asunto(s)
Encéfalo , Micelas , Fluorescencia , Humanos , Imagenología Tridimensional/métodos , Riñón , PáncreasRESUMEN
Traumatic brain injury (TBI) results in deficits that are often followed by recovery. The contralesional cortex can contribute to this process but how distinct contralesional neurons and circuits respond to injury remains to be determined. To unravel adaptations in the contralesional cortex, we used chronic in vivo two-photon imaging. We observed a general decrease in spine density with concomitant changes in spine dynamics over time. With retrograde co-labeling techniques, we showed that callosal neurons are uniquely affected by and responsive to TBI. To elucidate circuit connectivity, we used monosynaptic rabies tracing, clearing techniques and histology. We demonstrate that contralesional callosal neurons adapt their input circuitry by strengthening ipsilateral connections from pre-connected areas. Finally, functional in vivo two-photon imaging demonstrates that the restoration of pre-synaptic circuitry parallels the restoration of callosal activity patterns. Taken together our study thus delineates how callosal neurons structurally and functionally adapt following a contralateral murine TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Cuerpo Calloso , Animales , Corteza Cerebral , Cuerpo Calloso/fisiología , Ratones , Neuronas/fisiologíaRESUMEN
Recent studies suggest that metabolic changes and oxygen deficiency in the central nervous system play an important role in the pathophysiology of multiple sclerosis (MS). In our present study, we investigated the changes in oxygenation and analyzed the vascular perfusion of the spinal cord in a rodent model of MS. We performed multispectral optoacoustic tomography of the lumbar spinal cord before and after an oxygen enhancement challenge in mice with experimental autoimmune encephalomyelitis (EAE), a model for MS. In addition, mice were transcardially perfused with lectin to label the vasculature and their spinal columns were optically cleared, followed by light sheet fluorescence microscopy. To analyze the angioarchitecture of the intact spine, we used VesSAP, a novel deep learning-based framework. In EAE mice, the spinal cord had lower oxygen saturation and hemoglobin concentration compared to healthy mice, indicating compromised perfusion of the spinal cord. Oxygen administration reversed hypoxia in the spinal cord of EAE mice, although the ventral region remained hypoxic. Additionally, despite the increased vascular density, we report a reduction in length and complexity of the perfused vascular network in EAE. Taken together, these findings highlight a new aspect of neuroinflammatory pathology, revealing a significant degree of hypoxia in EAE in vivo that is accompanied by changes in spinal vascular perfusion. The study also introduces optoacoustic imaging as a tractable technique with the potential to further decipher the role of hypoxia in EAE and to monitor it in MS patients.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Humanos , Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Enfermedades Neuroinflamatorias , Oxígeno/metabolismo , Médula Espinal/metabolismoRESUMEN
Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/prevención & control , Progresión de la Enfermedad , Ganglios Espinales , Ganglios Simpáticos , Ratones , Neuronas/fisiología , Placa Aterosclerótica/prevención & controlRESUMEN
Recent advances in cardiovascular research have led to a more comprehensive understanding of molecular mechanisms of atherosclerosis. It has become apparent that the disease involves three layers of the arterial wall: the intima, the media, and a connective tissue coat termed the adventitia. It is also now appreciated that arteries are surrounded by adipose and neuronal tissues. In addition, adjacent to and within the adventitia, arteries are embedded in a loose connective tissue containing blood vessels (vasa vasora) and lymph vessels, artery-draining lymph nodes and components of the peripheral nervous system, including periarterial nerves and ganglia. During atherogenesis, each of these tissues undergoes marked structural and cellular alterations. We propose that a better understanding of these cell-cell and cell-tissue interactions may considerably advance our understanding of cardiovascular disease pathogenesis. Methods to acquire subcellular optical access to the intact tissues surrounding healthy and diseased arteries are urgently needed to achieve these aims. Tissue clearing is a landmark next-generation, three-dimensional (3D) microscopy technique that allows to image large-scale hitherto inaccessible intact deep tissue compartments. It allows for detailed reconstructions of arteries by a combination of labelling, clearing, advanced microscopies and other imaging and data-analysis tools. Here, we describe two distinct tissue clearing protocols; solvent-based modified three-dimensional imaging of solvent-cleared organs (3DISCO) clearing and another using aqueous-based 2,2'-thiodiethanol (TDE) clearing, both of which complement each other.
Asunto(s)
Aterosclerosis , Imagenología Tridimensional , Arterias , Humanos , Imagenología Tridimensional/métodos , MicroscopíaRESUMEN
INTRODUCTION: Histology on fixed brain tissue is a key technique to investigate the pathophysiology of neurological disorders. Best results are obtained by perfusion fixation, however, multiple protocols are available and so far the optimal perfusion pressure (PP) for the preservation of brain tissue while also maintaining vascular integrity is not defined. Therefore, the aim of our study was to investigate the effect of different PPs on the cerebral vasculature and to define the PP optimal for the preservation of both vascular integrity and tissue fixation. MATERIAL AND METHODS: Male C57Bl6 mice, 8 weeks old, were perfused with PPs of 50/125/300â¯mmHg (series I) or 50/100/150/300â¯mmHg (series II). In series I, vascular integrity, e.g. BBB permeability, vessel diameter, and occurrence of vasospasms were investigated by spectrophotometry, light-sheet and 2-photon microscopy, respectively. In series II, we investigated vascular and neuronal artifacts and the occurrence of hemorrhage or microthrombi by light microscopy. RESULTS: While a PP below the physiological systolic blood pressure results in the collapse of parenchymal vessels and formation of microvasospasms and microclots, a PP above the physiological systolic blood pressure dilates cerebral vessels, induces microvasospasms and disrupts the BBB. In terms of tissue integrity, our results confirm that higher PPs lead to fewer artifacts such as dark neurons or perivascular courts. CONCLUSION: Our study demonstrates that the PP critically affects both vascular and tissue integrity in brain tissue preserved by perfusion fixation. A PP between 125 and 150â¯mmHg is optimal for the preservation of the cerebral vasculature and neuronal structures.