Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
Sci Rep ; 14(1): 20236, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215087

RESUMEN

Systemic lupus erythematosus (SLE) is a multifactorial disease characterized by the convergence of genetic, immunological, and viral elements resulting in a complex interaction of both internal and external factors. The role of the Epstein-Barr virus (EBV) and human endogenous retroviruses (HERV-E) as triggers and maintenance elements in the pathogenesis of SLE has been widely recognized. Previous studies have independently evaluated the effects of EBV and HERV-E in this disease. In this work, for the first time, these viral factors are jointly investigated in SLE patients. This study aimed at assessing the differential expression of immune regulatory genes and the incidence of specific viral pathogens (EBV and HERV-E), alongside the detailed characterization of surface markers in T- and B-lymphocytes in patients with SLE and control participants. A comparative analysis between patients with SLE and control participants was performed, evaluating the expression of phenotypic markers and genes involved in the immune response (TNF-α, IL-2, IL-6, IL-10, IFNG, TLR3), as well as HERV-E gag and EBV viral genes (LMP1 and BZLF1).A significant association between SLE and EBV was found in this study. A notable increase in EBV LMP1 gene expression was observed in patients with SLE . Also, a significant overexpression of HERV-E was observed, in addition to a considerable increase in the distribution of the cell surface marker CD27 + on T- and B-lymphocytes, observed in individuals with SLE compared to the control group. This study provides evidence regarding the role that EBV virus plays in lymphocytes in the context of SLE, highlighting how both the virus and the host gene expression may influence disease pathogenesis by altering immune regulatory pathways mediated by TNF-α, IFN-γ, and IL-10, as well as parallel overexpression of HERV-E gag. The decrease in TLR3 could indicate a compromised antiviral response, which could facilitate viral reactivation and contribute to disease activity.


Asunto(s)
Retrovirus Endógenos , Herpesvirus Humano 4 , Leucocitos Mononucleares , Lupus Eritematoso Sistémico , Humanos , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/virología , Retrovirus Endógenos/genética , Herpesvirus Humano 4/inmunología , Herpesvirus Humano 4/genética , Adulto , Femenino , Masculino , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Leucocitos Mononucleares/metabolismo , Perfilación de la Expresión Génica , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/genética , Persona de Mediana Edad , Linfocitos B/inmunología , Linfocitos B/virología , Estudios de Casos y Controles , Linfocitos T/inmunología , Citocinas/metabolismo , Citocinas/genética
3.
Int J Mol Sci ; 22(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070747

RESUMEN

Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-translational modifications (PTMs) have been extensively studied in malignancies due to its relevance in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase expression in CRC and its impact in cell function and in several biological pathways associated with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface molecules between cells and their environment and in several cases facilitate molecule function. CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins, heat shock protein 90 (Hsp90), ß1 integrin, carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-ß) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell-cell adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and gut microbiota composition; all such functions are associated with the prognosis and evolution of the disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide processing and to modify glycoconjugate structures in order to control CRC progression and prevent metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens, generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric antigen receptors) T cells.


Asunto(s)
Neoplasias Colorrectales/genética , Glicoesfingolípidos/inmunología , Glicosiltransferasas/genética , Mucinas/genética , Proteínas de Neoplasias/genética , Procesamiento Proteico-Postraduccional , Anexina A1/genética , Anexina A1/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Decorina/genética , Decorina/inmunología , Receptores ErbB/genética , Receptores ErbB/inmunología , Regulación Neoplásica de la Expresión Génica , Glicoesfingolípidos/metabolismo , Glicosilación , Glicosiltransferasas/inmunología , Humanos , Inmunoterapia Adoptiva/métodos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/inmunología , Integrina beta1/genética , Integrina beta1/inmunología , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/inmunología , Mucinas/inmunología , Proteínas de Neoplasias/inmunología , Receptor fas/genética , Receptor fas/inmunología
4.
Front Oncol ; 10: 603495, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585220

RESUMEN

Glioblastoma (GB), the most aggressive malignant glioma, is made up of a large percentage of glioma-associated microglia/macrophages (GAM), suggesting that immune cells play an important role in the pathophysiology of GB. Under physiological conditions, microglia, the phagocytes of the central nervous system (CNS), are involved in various processes such as neurogenesis or axonal growth, and the progression of different conditions such as Alzheimer's disease. Through immunohistochemical studies, markers that enhance GB invasiveness have been shown to be expressed in the peritumoral area of ​​the brain, such as Transforming Growth Factor α (TGF-α), Stromal Sell-Derived Factor 1 (SDF1/CXCL12), Sphingosine-1-Phosphate (S1P) and Neurotrophic Factor Derived from the Glial cell line (GDNF), contributing to the increase in tumor mass. Similarly, it has also been described 17 biomarkers that are present in hypoxic periarteriolar HSC niches in bone marrow and in hypoxic periarteriolar GSC niches in glioblastoma. Interestingly, microglia plays an important role in the microenvironment that supports GB progression, being one of the most important focal points in the study of therapeutic targets for the development of new drugs. In this review, we describe the altered signaling pathways in microglia in the context of GB. We also show how microglia interact with glioblastoma cells and the epigenetic mechanisms involved. Regarding the interactions between microglia and neurogenic niches, some authors indicate that glioblastoma stem cells (GSC) are similar to neural stem cells (NSC), common stem cells in the subventricular zone (SVZ), suggesting that this could be the origin of GB. Understanding the similarities between SVZ and the tumor microenvironment could be important to clarify some mechanisms involved in GB malignancy and to support the discovering of new therapeutic targets for the development of more effective glioblastoma treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA