Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Int Endod J ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687284

RESUMEN

AIM: The aim of current study is the development and optimization of biodegradable polymeric nanoparticles (NPs) to be used in the field of Endodontics as intracanal medication in cases of avulsed teeth with extended extra-oral time, utilizing PLGA polymers loaded with the anti-inflammatory drug clobetasol propionate (CP). METHODOLOGY: CP-loaded nanoparticles (CP-NPs) were prepared using the solvent displacement method. CP release profile from CP-NPs was assessed for 48 h against free CP. Using extracted human teeth, the degree of infiltration inside the dentinal tubules was studied for both CP-NPs and CP. The anti-inflammatory capacity of CP-NPs was evaluated in vitro measuring their response and reaction against inflammatory cells, in particular against macrophages. The enzyme-linked immunosorbent assay (ELISA) was used to examine the cytokine release of IL-1ß and TNF-α. RESULTS: Optimized CP-NPs displayed an average size below 200 nm and a monomodal population. Additionally, spherical morphology and non-aggregation of CP-NPs were confirmed by transmission electron microscopy. Interaction studies showed that CP was encapsulated inside the NPs and no covalent bonds were formed. Moreover, CP-NPs exhibited a prolonged and steady release with only 21% of the encapsulated CP released after 48 h. Using confocal laser scanning microscopy, it was observed that CP-NPs were able to display enhanced penetration into the dentinal tubules. Neither the release of TNF-α nor IL-1ß increased in CP-NPs compared to the LPS control, displaying results similar and even less than the TCP after 48 h. Moreover, IL-1ß release in LPS-stimulated cells, decreased when macrophages were treated with CP-NPs. CONCLUSIONS: In the present work, CP-NPs were prepared, optimized and characterized displaying significant increase in the degree of infiltration inside the dentinal tubules against CP and were able to significantly reduce TNF-α release. Therefore, CP-NPs constitute a promising therapy for the treatment of avulsed teeth with extended extra-oral time.

2.
Int Endod J ; 57(7): 907-921, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38374518

RESUMEN

AIM: Design, produce and assess the viability of a novel nanotechnological antibacterial thermo-sensible intracanal medicament This involves encapsulating calcium hydroxide (Ca(OH)2) within polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) and dispersing them in a thermosensitive gel (Ca(OH)2-NPs-gel). In addition, perform in vitro and ex vivo assessments to evaluate tissue irritation and penetration capacity into dentinal tubules in comparison to free Ca(OH)2. METHODOLOGY: Reproducibility of Ca(OH)2-NPs was confirmed by obtaining the average size of the NPs, their polydispersity index, zeta potential and entrapment efficiency. Moreover, rheological studies of Ca(OH)2-NPs-gel were carried out with a rheometer, studying the oscillatory stress sweep, the mean viscosity value, frequency and temperature sweeps. Tolerance was assessed using the membrane of an embryonated chicken egg. In vitro Ca(OH)2 release was studied by direct dialysis in an aqueous media monitoring the amount of Ca(OH)2 released. Six extracted human teeth were used to study the depth of penetration of fluorescently labelled Ca(OH)2-NPs-gel into the dentinal tubules and significant differences against free Ca(OH)2 were calculated using one-way anova. RESULTS: Ca(OH)2-NPs-gel demonstrated to be highly reproducible with an average size below 200 nm, a homogeneous NPs population, negative surface charge and high entrapment efficiency. The analysis of the thermosensitive gel allowed us to determine its rheological characteristics, showing that at 10°C gels owned a fluid-like behaviour meanwhile at 37°C they owned an elastic-like behaviour. Ca(OH)2-NPs-gel showed a prolonged drug release and the depth of penetration inside the dentinal tubules increased in the most apical areas. In addition, it was found that this drug did not produce irritation when applied to tissues such as eggs' chorialantoidonic membrane. CONCLUSION: Calcium hydroxide-loaded PLGA NPs dispersed in a thermosensitive gel may constitute a suitable alternative as an intracanal antibacterial medicament.


Asunto(s)
Hidróxido de Calcio , Nanopartículas , Hidróxido de Calcio/química , Nanopartículas/química , Humanos , Geles , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Irrigantes del Conducto Radicular/química , Temperatura , Técnicas In Vitro , Ácido Poliglicólico/química , Reología , Embrión de Pollo , Ácido Láctico/química , Dentina/efectos de los fármacos
3.
Gels ; 10(2)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38391479

RESUMEN

Thyme oil (THO) possesses excellent antibacterial and antioxidant properties which are suitable for skin inflammatory disorders such as acne vulgaris. However, THO is insoluble in water and its components are highly volatile. Therefore, these drawbacks may be overcome by its encapsulation in biodegradable PLGA nanoparticles (THO-NPs) that had been functionalized using several strategies. Moreover, cell viability was studied in HaCat cells, confirming their safety. In order to assess therapeutic efficacy against acne, bacterial reduction capacity and antioxidant properties were assessed. Moreover, the anti-inflammatory and wound-healing abilities of THO-NPs were also confirmed. Additionally, ex vivo antioxidant assessment was carried out using pig skin, demonstrating the suitable antioxidant properties of THO-NPs. Moreover, THO and THO-NPs were dispersed in a gelling system, and stability, rheological properties, and extensibility were assessed. Finally, the biomechanical properties of THO-hydrogel and THO-NP-hydrogel were studied in human volunteers, confirming the suitable activity for the treatment of acne. As a conclusion, THO has been encapsulated into PLGA NPs, and in vitro, ex vivo, and in vivo assessments had been carried out, demonstrating excellent properties for the treatment of inflammatory skin disorders.

4.
Int J Nanomedicine ; 19: 1225-1248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348173

RESUMEN

Purpose: Acne vulgaris is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne. Methods: To address this issue, nanostructured lipid carriers (NLC) capable of encapsulating thymol, a natural compound used for the treatment of acne vulgaris, were developed either using ultrasonication probe or high-pressure homogenization and optimized using 22-star factorial design by analyzing the effect of NLC composition on their physicochemical parameters. These NLC were optimized using a design of experiments approach and were characterized using different physicochemical techniques. Moreover, short-term stability and cell viability using HaCat cells were assessed. Antimicrobial efficacy of the developed NLC was assessed in vitro and ex vivo. Results: NLC encapsulating thymol were developed and optimized and demonstrated a prolonged thymol release. The formulation was dispersed in gels and a screening of several gels was carried out by studying their rheological properties and their skin retention abilities. From them, carbomer demonstrated the capacity to be highly retained in skin tissues, specifically in the epidermis and dermis layers. Moreover, antimicrobial assays against healthy and pathological skin pathogens demonstrated the therapeutic efficacy of thymol-loaded NLC gelling systems since NLC are more efficient in slowly reducing C. acnes viability, but they possess lower antimicrobial activity against S. epidermidis, compared to free thymol. Conclusion: Thymol was successfully loaded into NLC and dispersed in gelling systems, demonstrating that it is a suitable candidate for topical administration against acne vulgaris by eradicating pathogenic bacteria while preserving the healthy skin microbiome.


Asunto(s)
Acné Vulgar , Antiinfecciosos , Nanoestructuras , Humanos , Timol/farmacología , Portadores de Fármacos/química , Lípidos/química , Nanoestructuras/química , Antiinfecciosos/farmacología , Geles/química , Tamaño de la Partícula
5.
Colloids Surf B Biointerfaces ; 234: 113678, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194839

RESUMEN

Thymol-loaded PLGA nanoparticles (TH-NPs) were incorporated into different semi-solid formulations using variable gelling agents (carbomer, polysaccharide and poloxamer). The formulations were physicochemically characterized in terms of size, polydispersity index and zeta potential. Moreover, stability studies were performed by analyzing the backscattering profile showing that the gels were able to increase the nanoparticles stability at 4 °C. Moreover, rheological properties showed that all gels were able to increase the viscosity of TH-NPs with the carbomer gels showing the highest values. Moreover, the observation of carbomer dispersed TH-NPs under electron microscopical techniques showed 3D nanometric cross-linked filaments with the NPs found embedded in the threads. In addition, cytotoxicity studies showed that keratinocyte cells in contact with the formulations obtained cell viability values higher than 70 %. Furthermore, antimicrobial efficacy was assessed against C. acnes and S. epidermidis showing that the formulations eliminated the pathogenic C. acnes but preserved the resident S. epidermidis which contributes towards a healthy skin microbiota. Finally, biomechanical properties of TH-NPs dispersed in carbomer gels in contact with healthy human skin were studied showing that they did not alter skin properties and were able to reduce sebum which is increased in acne vulgaris. As a conclusion, TH-NPs dispersed in semi-solid formulations and, especially in carbomer gels, may constitute a suitable solution for the treatment of acne vulgaris.


Asunto(s)
Acné Vulgar , Nanopartículas , Humanos , Hidrogeles/química , Timol/farmacología , Piel , Acné Vulgar/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Nanopartículas/química
6.
Int J Pharm ; 651: 123732, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142012

RESUMEN

Acne constitutes one of the most prevalent skin disorder affecting both skin and mental health of patients. However, no cure has been developed so far. In this area, Thymol constitutes a potential candidate since it is able to restore the healthy microbiota of the skin. However, its permeation properties cause its fast elimination and, to avoid this problem, thymol has been loaded into nanostructured lipid carriers (TH-NLCs). Moreover, to increase the suitability of these systems for skin applications, several surface functionalization strategies of TH-NLCs had been assessed. Among the different molecules, phosphatidylcholine-TH-NLCs demonstrated to be safe as well as to provide high antioxidant activity in cellular studies. Therefore, to administer these systems to the skin, functionalized TH-NLCs were dispersed into a carbomer gel developing semi-solid formulations. Rheological properties, porosity and extensibility of TH dispersed in carbomer as well as phosphatidylcholine-TH-NLCs were assessed demonstrating suitable properties for dermal applications. Moreover, both formulations were applied in healthy volunteers demonstrating that gel-phosphatidylcholine-TH-NLCs were able to increase in skin hydration, decrease water loss and reduce skin sebum. Therefore, gel-phosphatidylcholine-TH-NLCs proved to be a suitable system for skin pathologies linked with high sebum generation, loss of hydration and high oxidation, such as acne vulgaris.


Asunto(s)
Acné Vulgar , Nanopartículas , Nanoestructuras , Humanos , Timol , Portadores de Fármacos/uso terapéutico , Piel , Acné Vulgar/tratamiento farmacológico , Fosfatidilcolinas , Tamaño de la Partícula
7.
Int J Nanomedicine ; 18: 6979-6997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026534

RESUMEN

Purpose: Cancer is one of the major causes of death worldwide affecting more than 19 million people. Traditional cancer therapies have many adverse effects and often result in unsatisfactory outcomes. Natural flavones, such as apigenin (APG), have demonstrated excellent antitumoral properties. However, they have a low aqueous solubility. To overcome this drawback, APG can be encapsulated in nanostructured lipid carriers (NLC). Therefore, we developed dual NLC encapsulating APG (APG-NLC) with a lipid matrix containing rosehip oil, which is known for its anti-inflammatory and antioxidant properties. Methods: Optimisation, physicochemical characterisation, biopharmaceutical behaviour, and therapeutic efficacy of this novel nanostructured system were assessed. Results: APG-NLC were optimized obtaining an average particle size below 200 nm, a surface charge of -20 mV, and an encapsulation efficiency over 99%. The APG-NLC released APG in a sustained manner, and the results showed that the formulation was stable for more than 10 months. In vitro studies showed that APG-NLC possess significant antiangiogenic activity in ovo and selective antiproliferative activity in several cancer cell lines without exhibiting toxicity in healthy cells. Conclusion: APG-NLC containing rosehip oil were optimised. They exhibit suitable physicochemical parameters, storage stability for more than 10 months, and prolonged APG release. Moreover, APG-NLC were internalised inside tumour cells, showing the capacity to cause cytotoxicity in cancer cells without damaging healthy cells.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Apigenina , Lípidos/química , Portadores de Fármacos/química , Nanoestructuras/química , Antioxidantes/química , Tamaño de la Partícula , Neoplasias/tratamiento farmacológico
8.
Cells ; 12(15)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37566058

RESUMEN

The comet assay in Drosophila has been used in the last few years to study DNA damage responses (DDR) in different repair-mutant strains and to compare them to analyze DNA repair. We have used this approach to study interactions between DNA repair pathways in vivo. Additionally, we have implemented an ex vivo comet assay, in which nucleoids from treated and untreated cells were incubated ex vivo with cell-free protein extracts from individuals with distinct repair capacities. Four strains were used: wild-type OregonK (OK), nucleotide excision repair mutant mus201, dmPolQ protein mutant mus308, and the double mutant mus201;mus308. Methyl methanesulfonate (MMS) was used as a genotoxic agent. Both approaches were performed with neuroblasts from third-instar larvae; they detected the effects of the NER and dmPolQ pathways on the DDR to MMS and that they act additively in this response. Additionally, the ex vivo approach quantified that mus201, mus308, and the double mutant mus201;mus308 strains presented, respectively, 21.5%, 52.9%, and 14.8% of OK strain activity over MMS-induced damage. Considering the homology between mammals and Drosophila in repair pathways, the detected additive effect might be extrapolated even to humans, demonstrating that Drosophila might be an excellent model to study interactions between repair pathways.


Asunto(s)
Drosophila melanogaster , Drosophila , Humanos , Animales , Ensayo Cometa , Drosophila/genética , Drosophila melanogaster/genética , Reparación del ADN , Daño del ADN , Metilmetanosulfonato/farmacología , Mamíferos/genética
9.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175765

RESUMEN

Nanocarriers, and especially nanostructured lipid carriers (NLC), represent one of the most effective systems for topical drug administration. NLCs are biodegradable, biocompatible and provide a prolonged drug release. The glutamate release inhibitor Riluzole (RLZ) is a drug currently used for amyotrophic lateral sclerosis (ALS), with anti-proliferative effects potentially beneficial for diseases with excessive cell turnover. However, RLZ possesses low water solubility and high light-sensibility. We present here optimized NLCs loaded with RLZ (RLZ-NLCs) as a potential topical treatment. RLZ-NLCs were prepared by the hot-pressure homogenization method using active essential oils as liquid lipids, and optimized using the design of experiments approach. RLZ-NLCs were developed obtaining optimal properties for dermal application (mean size below 200 nm, negative surface charge and high RLZ entrapment efficacy). In vitro release study demonstrates that RLZ-NLCs allow the successful delivery of RLZ in a sustained manner. Moreover, RLZ-NLCs are not angiogenic and are able to inhibit keratinocyte cell proliferation. Hence, a NLCs delivery system loading RLZ in combination with natural essential oils constitutes a promising strategy against keratinocyte hyperproliferative conditions.


Asunto(s)
Nanopartículas , Nanoestructuras , Enfermedades de la Piel , Humanos , Riluzol/farmacología , Portadores de Fármacos , Enfermedades de la Piel/metabolismo , Liberación de Fármacos , Lípidos/farmacología , Tamaño de la Partícula , Piel/metabolismo
10.
Int J Pharm ; 639: 122982, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37116598

RESUMEN

Licochalcone-A (Lico-A) PLGA NPs functionalized with cell penetrating peptides B6 and Tet-1 are proposed for the treatment of ocular anti-inflammatory diseases. In this work, we report the in vitro biocompatibility of cell penetrating peptides-functionalized Lico-A-loaded PLGA NPs in Caco-2 cell lines revealing a non-cytotoxic profile, and their anti-inflammatory activity against RAW 264.7 cell lines. Given the risk of hydrolysis of the liquid suspensions, freeze-drying was carried out testing different cryoprotectants (e.g., disaccharides, alcohols, and oligosaccharide-derived sugar alcohol) to prevent particle aggregation and mitigate physical stress. As the purpose is the topical eye instillation of the nanoparticles, to reduce precorneal wash-out, increase residence time and thus Lico-A bioavailability, an in-situ forming gel based on poloxamer 407 containing Lico-A loaded PLGA nanoparticles functionalized with B6 and Tet-1 for ocular administration has been developed. Developed formulations remain in a flowing semi-liquid state under non-physiological conditions and transformed into a semi-solid state under ocular temperature conditions (35 °C), which is beneficial for ocular administration. The pH, viscosity, texture parameters and gelation temperature results met the requirements for ophthalmic formulations. The gel has characteristics of viscoelasticity, suitable mechanical and mucoadhesive performance which facilitate its uniform distribution over the conjunctiva surface. In conclusion, we anticipate the potential clinical significance of our developed product provided that a synergistic effect is achieved by combining the high anti-inflammatory activity of Lico-A delivered by PLGA NPs with B6 and Tet-1 for site-specific targeting in the eye, using an in-situ forming gel.


Asunto(s)
Péptidos de Penetración Celular , Nanopartículas , Humanos , Células CACO-2 , Antiinflamatorios , Nanopartículas/química , Ojo
11.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36232614

RESUMEN

The aim of this work was to design innovative nanostructured lipid carriers (NLCs) for the delivery of dexibuprofen (DXI) as an antiproliferative therapy against tumoral processes, and overcome its side effects. DXI-NLC samples were prepared with beeswax, Miglyol 812 and Tween 80 using high-pressure homogenization. A two-level factorial design 24 was applied to optimize the formulation, and physicochemical properties such as particle size, zeta potential, polydispersity index and entrapment efficiency were measured. Optimized parameters of DXI-NLCs exhibited a mean particle size of 152.3 nm, a polydispersity index below 0.2, and high DXI entrapment efficiency (higher than 99%). Moreover, DXI-NLCs provided a prolonged drug release, slower than the free DXI. DXI-NLCs were stable for 2 months and their morphology revealed that they possess a spherical shape. In vitro cytotoxicity and anticancer potential studies were performed towards prostate (PC-3) and breast (MDA-MB-468) cancer cell lines. The highest activity of DXI-NLCs was observed towards breast cancer cells, which were effectively inhibited at 3.4 µM. Therefore, DXI-NLCs constitute a promising antiproliferative therapy that has proven to be especially effective against breast cancer.


Asunto(s)
Neoplasias de la Mama , Nanoestructuras , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/química , Humanos , Ibuprofeno/análogos & derivados , Lípidos/química , Masculino , Nanoestructuras/química , Tamaño de la Partícula , Polisorbatos/uso terapéutico
12.
Pharmaceutics ; 14(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35890414

RESUMEN

Endodontic-related diseases constitute the fourth most expensive pathologies in industrialized countries. Specifically, endodontics is the part of dentistry focused on treating disorders of the dental pulp and its consequences. In order to treat these problems, especially endodontic infections, dental barriers and complex root canal anatomy should be overcome. This constitutes an unmet medical need since the rate of successful disinfection with the currently marketed drugs is around 85%. Therefore, nanoparticles constitute a suitable alternative in order to deliver active compounds effectively to the target site, increasing their therapeutic efficacy. Therefore, in the present review, an overview of dental anatomy and the barriers that should be overcome for effective disinfection will be summarized. In addition, the versatility of nanoparticles for drug delivery and their specific uses in dentistry are comprehensively discussed. Finally, the latest findings, potential applications and state of the art nanoparticles with special emphasis on biodegradable nanoparticles used for endodontic disinfection are also reviewed.

13.
Pharmaceutics ; 14(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35214019

RESUMEN

Licochalcone-A is a natural compound with anti-inflammatory properties. However, it possesses low water solubility, making its application for the treatment of ocular inflammation difficult. To overcome this drawback, biodegradable nanoparticles incorporating Licochalcone-A have been developed. Additionally, to avoid fast clearance and increase cellular internalization into the ocular tissues, PLGA nanoparticles have been functionalized using PEG and cell penetrating peptides (Tet-1 and B6). To optimize the formulations, a factorial design was carried out and short-term stability of the nanoparticles was studied. Moreover, morphology was also observed by transmission electron microcopy and in vitro drug release was carried out. Ocular tolerance of the formulations was ensured in vitro and in vivo and anti-inflammatory therapeutic efficacy was also assessed. Surface functionalized nanoparticles loading Licochalcone-A were developed with an average size below 200 nm, a positive surface charge, and a monodisperse population. The formulations were non-irritant and showed a prolonged Licochalcone-A release. Despite the fact that both Licochalcone-A Tet-1 and B6 functionalized nanoparticles demonstrated to be suitable for the treatment of ocular inflammation, B6 targeted nanoparticles provided greater therapeutic efficacy in in vivo assays.

14.
Epilepsia Open ; 7 Suppl 1: S121-S132, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34862851

RESUMEN

Epilepsy is the second most prevalent neurological disease worldwide. It is mainly characterized by an electrical abnormal activity in different brain regions. The massive entrance of Ca2+ into neurons is the main neurotoxic process that lead to cell death and finally to neurodegeneration. Although there are a huge number of antiseizure medications, there are many patients who do not respond to the treatments and present refractory epilepsy. In this context, nanomedicine constitutes a promising alternative to enhance the central nervous system bioavailability of antiseizure medications. The encapsulation of different chemical compounds at once in a variety of controlled drug delivery systems gives rise to an enhanced drug effectiveness mainly due to their targeting and penetration into the deepest brain region and the protection of the drug chemical structure. Thus, in this review we will explore the recent advances in the development of drugs associated with polymeric and lipid-based nanocarriers as novel tools for the management of epilepsy disorders.


Asunto(s)
Epilepsia , Nanopartículas , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Epilepsia/tratamiento farmacológico , Humanos , Nanomedicina , Nanopartículas/química , Nanopartículas/uso terapéutico
15.
Int J Pharm ; 612: 121379, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34915146

RESUMEN

Riluzole-loaded PLGA nanoparticles (RLZ-NPs) were developed to improve the biopharmaceutical profile of RLZ after ocular administration. Moreover, RLZ-NPs were dispersed in an in situ gelling system (RLZ-NPs-Gel) for topical administration as a potential neuroprotective strategy against glaucoma. Formulations were optimized using the design of experiments approach. Characterization of the physicochemical and rheological properties, as well as interaction studies were carried out. To ensure RLZ-NPs-Gel ocular safety, the irritant potential was also evaluated in vitro and in vivo. Moreover, in vivo ocular biodistribution was also undertaken. Optimized RLZ-NPs showed an average size below 200 nm, an encapsulation efficiency greater than 90% and a negative surface charge. Interaction studies of RLZ-NPs showed that RLZ was dispersed in the polymeric matrix. RLZ-NPs-Gel possess a pseudoplastic behavior and a medium-low post-gelling viscosity to avoid discomfort after ocular application. Simultaneously, RLZ-NPs-Gel were able to increase RLZ-NPs contact with the ocular surface. Both formulations demonstrated the ability to be distributed in the posterior eye segment after 24 h of their application obtaining a more delayed distribution for RLZ-NPs-Gel. Therefore, a novel in situ gelling system able to disperse RLZ-NPs has been successfully developed as innovative neuroprotective strategy for potential topical treatment of glaucoma.


Asunto(s)
Nanopartículas , Segmento Posterior del Ojo , Administración Oftálmica , Riluzol , Distribución Tisular
16.
Pharmaceutics ; 15(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36678731

RESUMEN

Cancer is identified as one of the main causes of death worldwide, and an effective treatment that can reduce/eliminate serious adverse effects is still an unmet medical need. Diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has demonstrated promising antitumoral properties. However, the prolonged use of this NSAID poses several adverse effects. These can be overcome by the use of suitable delivery systems that are able to provide a controlled delivery of the payload. In this study, Diclofenac was incorporated into biodegradable polymeric nanoparticles based on PLGA and the formulation was optimized using a factorial design approach. A monodisperse nanoparticle population was obtained with a mean size of ca. 150 nm and negative surface charge. The release profile of diclofenac from the optimal formulation followed a prolonged release kinetics. Diclofenac nanoparticles demonstrated antitumoral and antiangiogenic properties without causing cytotoxicity to non-tumoral cells, and can be pointed out as a safe, promising and innovative nanoparticle-based formulation with potential antitumoral effects.

17.
J Nanobiotechnology ; 19(1): 359, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749747

RESUMEN

BACKGROUND: Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. RESULTS: Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around - 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. CONCLUSION: TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment.


Asunto(s)
Acné Vulgar/microbiología , Antibacterianos , Propionibacteriaceae/efectos de los fármacos , Timol , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Línea Celular , Humanos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Piel/efectos de los fármacos , Piel/metabolismo , Piel/microbiología , Timol/química , Timol/farmacocinética , Timol/farmacología
18.
Pharmaceutics ; 13(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834165

RESUMEN

Pioglitazone-loaded PLGA-PEG nanoparticles (NPs) were stabilized by the spray drying technique as an alternative to the treatment of ocular inflammatory disorders. Pioglitazone-NPs were developed and characterized physiochemically. Interaction studies, biopharmaceutical behavior, ex vivo corneal and scleral permeation, and in vivo bioavailability evaluations were conducted. Fibrillar diameter and interfibrillar corneal spacing of collagen was analyzed by synchrotron X-ray scattering techniques and stability studies at 4 °C and was carried out before and after the spray drying process. NPs showed physicochemical characteristics suitable for ocular administration. The release was sustained up to 46 h after drying; ex vivo corneal and scleral permeation profiles of pioglitazone-NPs before and after drying demonstrated higher retention and permeation through cornea than sclera. These results were correlated with an in vivo bioavailability study. Small-angle X-ray scattering (SAXS) analysis did not show a significant difference in the organization of the corneal collagen after the treatment with pioglitazone-NPs before and after the drying process, regarding the negative control. The stabilization process by Nano Spray Dryer B-90 was shown to be useful in preserving the activity of pioglitazone inside the NPs, maintaining their physicochemical characteristics, in vivo bioavailability, and non-damage to corneal collagen function after SAXS analysis was observed.

19.
Pharmaceutics ; 13(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34683990

RESUMEN

Dry eye disease (DED) is a high prevalent multifactorial disease characterized by a lack of homeostasis of the tear film which causes ocular surface inflammation, soreness, and visual disturbance. Conventional ophthalmic treatments present limitations such as low bioavailability and side effects. Lactoferrin (LF) constitutes a promising therapeutic tool, but its poor aqueous stability and high nasolacrimal duct drainage hinder its potential efficacy. In this study, we incorporate lactoferrin into hyaluronic acid coated liposomes by the lipid film method, followed by high pressure homogenization. Pharmacokinetic and pharmacodynamic profiles were evaluated in vitro and ex vivo. Cytotoxicity and ocular tolerance were assayed both in vitro and in vivo using New Zealand rabbits, as well as dry eye and anti-inflammatory treatments. LF loaded liposomes showed an average size of 90 nm, monomodal population, positive surface charge and a high molecular weight protein encapsulation of 53%. Biopharmaceutical behaviour was enhanced by the nanocarrier, and any cytotoxic effect was studied in human corneal epithelial cells. Developed liposomes revealed the ability to reverse dry eye symptoms and possess anti-inflammatory efficacy, without inducing ocular irritation. Hence, lactoferrin loaded liposomes could offer an innovative nanotechnological tool as suitable approach in the treatment of DED.

20.
Int J Pharm ; 609: 121188, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34655707

RESUMEN

Ocular inflammation is one of the most common comorbidities associated to ophthalmic surgeries and disorders. Since conventional topical ophthalmic treatments present disadvantages such as low bioavailability and relevant side effects, natural alternatives constitute an unmet medical need. In this sense, lactoferrin, a high molecular weight protein, is a promising alternative against inflammation. However, lactoferrin aqueous instability and high nasolacrimal duct drainage compromises its potential effectiveness. Moreover, nanotechnology has led to an improvement in the administration of active compounds with compromised biopharmaceutical profiles. Here, we incorporate lactoferrin into biodegradable polymeric nanoparticles and optimized the formulation using the design of experiments approach. A monodisperse nanoparticles population was obtained with an average size around 130 nm and positive surface charge. Pharmacokinetic and pharmacodynamic behaviour were improved by the nanoparticles showing a prolonged lactoferrin release profile. Lactoferrin nanoparticles were non-cytotoxic and non-irritant neither in vitro nor in vivo. Moreover, nanoparticles exhibited significantly increased anti-inflammatory efficacy in cell culture and preclinical assays. In conclusion, lactoferrin loaded nanoparticles constitute a safe and novel nanotechnological tool suitable for the treatment of ocular inflammation.


Asunto(s)
Lactoferrina , Nanopartículas , Administración Oftálmica , Animales , Segmento Anterior del Ojo , Disponibilidad Biológica , Oftalmopatías/tratamiento farmacológico , Humanos , Inflamación/tratamiento farmacológico , Soluciones Oftálmicas , Tamaño de la Partícula , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA