Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nucleic Acids Res ; 52(10): 5895-5911, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38716875

RESUMEN

Argonautes are an evolutionary conserved family of programmable nucleases that identify target nucleic acids using small guide oligonucleotides. In contrast to eukaryotic Argonautes (eAgos) that act on RNA, most studied prokaryotic Argonautes (pAgos) recognize DNA targets. Similarly to eAgos, pAgos can protect prokaryotic cells from invaders, but the biogenesis of guide oligonucleotides that confer them specificity to their targets remains poorly understood. Here, we have identified a new group of RNA-guided pAgo nucleases and demonstrated that a representative pAgo from this group, AmAgo from the mesophilic bacterium Alteromonas macleodii, binds guide RNAs of varying lengths for specific DNA targeting. Unlike most pAgos and eAgos, AmAgo is strictly specific to hydroxylated RNA guides containing a 5'-adenosine. AmAgo and related pAgos are co-encoded with a conserved RNA endonuclease from the HEPN superfamily (Ago-associated protein, Agap-HEPN). In vitro, Agap cleaves RNA between guanine and adenine nucleotides producing hydroxylated 5'-A guide oligonucleotides bound by AmAgo. In vivo, Agap cooperates with AmAgo in acquiring guide RNAs and counteracting bacteriophage infection. The AmAgo-Agap pair represents the first example of a pAgo system that autonomously produces RNA guides for DNA targeting and antiviral defense, which holds promise for programmable DNA targeting in biotechnology.


Asunto(s)
Alteromonas , Proteínas Argonautas , ADN Viral , ARN Guía de Sistemas CRISPR-Cas , Ribonucleasas , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ribonucleasas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Alteromonas/enzimología , Alteromonas/virología , ADN Viral/metabolismo , Bacteriófagos/fisiología
2.
Nat Microbiol ; 9(5): 1368-1381, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622379

RESUMEN

Two prokaryotic defence systems, prokaryotic Argonautes (pAgos) and CRISPR-Cas, detect and cleave invader nucleic acids using complementary guides and the nuclease activities of pAgo or Cas proteins. However, not all pAgos are active nucleases. A large clade of short pAgos bind nucleic acid guides but lack nuclease activity, suggesting a different mechanism of action. Here we investigate short pAgos associated with a putative effector nuclease, NbaAgo from Novosphingopyxis baekryungensis and CmeAgo from Cupriavidus metallidurans. We show that these pAgos form a heterodimeric complex with co-encoded effector nucleases (short prokaryotic Argonaute, DNase and RNase associated (SPARDA)). RNA-guided target DNA recognition unleashes the nuclease activity of SPARDA leading to indiscriminate collateral cleavage of DNA and RNA. Activation of SPARDA by plasmids or phages results in degradation of cellular DNA and cell death or dormancy, conferring target-specific population protection and expanding the range of known prokaryotic immune systems.


Asunto(s)
Proteínas Argonautas , Proteínas Bacterianas , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Desoxirribonucleasas/metabolismo , Desoxirribonucleasas/genética , Desoxirribonucleasas/química , Plásmidos/genética , Plásmidos/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , ADN/metabolismo , ADN/genética
3.
Biochimie ; 220: 39-47, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38128776

RESUMEN

Many prokaryotic Argonaute (pAgo) proteins act as programmable nucleases that use small guide DNAs for recognition and cleavage of complementary target DNA. Recent studies suggested that pAgos participate in cell defense against invader DNA and may also be involved in other genetic processes, including DNA replication and repair. The ability of pAgos to recognize specific targets potentially make them an invaluable tool for DNA manipulations. Here, we demonstrate that DNA-guided DNA-targeting pAgo nucleases from three bacterial species, DloAgo from Dorea longicatena, CbAgo from Clostridium butyricum and KmAgo from Kurthia massiliensis, can sense site-specific modifications in the target DNA, including 8-oxoguanine, thymine glycol, ethenoadenine and pyrimidine dimers. The effects of DNA modifications on the activity of pAgos strongly depend on their positions relative to the site of cleavage and are comparable to or exceed the effects of guide-target mismatches at corresponding positions. For all tested pAgos, the strongest effects are observed when DNA lesions are located at the cleavage position. The results demonstrate that DNA cleavage by pAgos is strongly affected by DNA modifications, thus making possible their use as sensors of DNA damage.


Asunto(s)
Proteínas Argonautas , Proteínas Bacterianas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , ADN/metabolismo , Daño del ADN , Guanina/metabolismo , Guanina/química , Guanina/análogos & derivados , Clostridium butyricum/metabolismo , Clostridium butyricum/genética , Timina/metabolismo , Timina/química , Timina/análogos & derivados
4.
Nucleic Acids Res ; 51(10): 5106-5124, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37094066

RESUMEN

Prokaryotic Argonaute proteins (pAgos) are homologs of eukaryotic Argonautes (eAgos) and are also thought to play a role in cell defense against invaders. However, pAgos are much more diverse than eAgos and little is known about their functional activities and target specificities in vivo. Here, we describe five pAgos from mesophilic bacteria that act as programmable DNA endonucleases and analyze their ability to target chromosomal and invader DNA. In vitro, the analyzed proteins use small guide DNAs for precise cleavage of single-stranded DNA at a wide range of temperatures. Upon their expression in Escherichia coli, all five pAgos are loaded with small DNAs preferentially produced from plasmids and chromosomal regions of replication termination. One of the tested pAgos, EmaAgo from Exiguobacterium marinum, can induce DNA interference between homologous sequences resulting in targeted processing of multicopy plasmid and genomic elements. EmaAgo also protects bacteria from bacteriophage infection, by loading phage-derived guide DNAs and decreasing phage DNA content and phage titers. Thus, the ability of pAgos to target multicopy elements may be crucial for their protective function. The wide spectrum of pAgo activities suggests that they may have diverse functions in vivo and paves the way for their use in biotechnology.


Asunto(s)
Proteínas Argonautas , Bacterias , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Bacterias/genética , ADN/metabolismo , Células Procariotas/metabolismo , Plásmidos/genética , Eucariontes/genética , Endonucleasas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
5.
Nucleic Acids Res ; 51(8): 4086-4099, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36987855

RESUMEN

Prokaryotic Argonautes (pAgos) are programmable nucleases involved in cell defense against invading DNA. In vitro, pAgos can bind small single-stranded guide DNAs to recognize and cleave complementary DNA. In vivo, pAgos preferentially target plasmids, phages and multicopy genetic elements. Here, we show that CbAgo nuclease from Clostridium butyricum can be used for genomic DNA engineering in bacteria. We demonstrate that CbAgo loaded with plasmid-derived guide DNAs can recognize and cleave homologous chromosomal loci, and define the minimal length of homology required for this targeting. Cleavage of plasmid DNA at an engineered site of the I-SceI meganuclease increases guide DNA loading into CbAgo and enhances processing of homologous chromosomal loci. Analysis of guide DNA loading into CbAgo also reveals off-target sites of I-SceI in the Escherichia coli genome, demonstrating that pAgos can be used for highly sensitive detection of double-stranded breaks in genomic DNA. Finally, we show that CbAgo-dependent targeting of genomic loci with plasmid-derived guide DNAs promotes homologous recombination between plasmid and chromosomal DNA, depending on the catalytic activity of CbAgo. Specific targeting of plasmids with Argonautes can be used to integrate plasmid-encoded sequences into the chromosome thus enabling genome editing.


Asunto(s)
ADN , Edición Génica , Plásmidos/genética , ADN/metabolismo , Bacterias/genética , ADN de Cadena Simple , Endonucleasas/metabolismo
6.
Biochimie ; 209: 142-149, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36804511

RESUMEN

Prokaryotic Argonaute (pAgo) proteins are programmable nucleases with great promise in genetic engineering and biotechnology. Previous studies identified several DNA-targeting pAgo nucleases from mesophilic and thermophilic prokaryotic species that are active in various temperature ranges. However, the effects of temperature on the specificity of target recognition and cleavage by pAgos have not been studied. Here, we describe a thermostable pAgo nuclease from the thermophilic bacterium Thermobrachium celere, TceAgo. We show that TceAgo preferentially uses 5'-phosphorylated small DNA guides and can perform specific cleavage of both single-stranded and double-stranded DNA substrates in a wide range of temperatures. Single-nucleotide mismatches between guide and target molecules differently change the reaction efficiency depending on the mismatch position, with the fidelity of target recognition greatly increased at elevated temperatures. Thus, TceAgo can serve as a tool to allow specific detection and cleavage of DNA targets in a temperature-dependent manner. The results demonstrate that the specificity of programmable nucleases can be strongly affected by the reaction conditions, which should be taken into account when using these nucleases in various in vitro and in vivo applications.


Asunto(s)
ADN , Células Procariotas , Temperatura , ADN/metabolismo , Bacterias/metabolismo , Desoxirribonucleasas/metabolismo
7.
Biochimie ; 206: 81-88, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36252889

RESUMEN

SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12. Structural mapping of these mutations suggests that some of them may affect the interactions of nsp12 with its cofactors nsp7/nsp8 as well as with RNA substrates. We have obtained several mutations of these types and demonstrated that some of them decrease specific activity of RdRp in vitro, possibly by changing RdRp assembly and/or its interactions with RNA. Therefore, natural polymorphisms in RdRp may potentially affect viral replication. Furthermore, we have synthesized a series of polyphenol and diketoacid derivatives based on previously studied inhibitors of hepatitis C virus RdRp and found that several of them can inhibit SARS-CoV-2 RdRp. Tested mutations in RdRp do not have strong effects on the efficiency of inhibition. Further development of more efficient non-nucleoside inhibitors of SARS-CoV-2 RdRp should take into account the existence of multiple polymorphic variants of RdRp.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , COVID-19/genética , Proteínas no Estructurales Virales/química , Antivirales/química
8.
FEBS J ; 290(1): 80-92, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35916766

RESUMEN

RNA-dependent RNA polymerase (RdRp) plays a key role in the replication of RNA viruses, including SARS-CoV-2. Processive RNA synthesis by RdRp is crucial for successful genome replication and expression, especially in the case of very long coronaviral genomes. Here, we analysed the activity of SARS-CoV-2 RdRp (the nsp12-nsp7-nsp8 complex) on synthetic primer-templates of various structures, including substrates with mismatched primers or template RNA modifications. It has been shown that RdRp cannot efficiently extend RNA primers containing mismatches and has no intrinsic RNA cleavage activity to remove the primer 3'-end, thus necessitating the action of exoribonuclease for proofreading. Similar to DNA-dependent RNA polymerases, RdRp can perform processive pyrophosphorolysis of the nascent RNA product but this reaction is also blocked in the presence of mismatches. Furthermore, we have demonstrated that several natural post-transcriptional modifications in the RNA template, which do not prevent complementary interactions (N6-methyladenosine, 5-methylcytosine, inosine and pseudouridine), do not change RdRp processivity. At the same time, certain modifications of RNA bases and ribose residues strongly block RNA synthesis, either prior to nucleotide incorporation (3-methyluridine and 1-methylguanosine) or immediately after it (2'-O-methylation). The results demonstrate that the activity of SARS-CoV-2 RdRp can be strongly inhibited by common modifications of the RNA template suggesting a way to design novel antiviral compounds.


Asunto(s)
ARN Viral , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Nucleótidos , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/química , SARS-CoV-2/enzimología , SARS-CoV-2/genética
10.
Nat Commun ; 13(1): 4624, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941106

RESUMEN

Argonaute proteins are programmable nucleases that have defense and regulatory functions in both eukaryotes and prokaryotes. All known prokaryotic Argonautes (pAgos) characterized so far act on DNA targets. Here, we describe a new class of pAgos that uniquely use DNA guides to process RNA targets. The biochemical and structural analysis of Pseudooceanicola lipolyticus pAgo (PliAgo) reveals an unusual organization of the guide binding pocket that does not rely on divalent cations and the canonical set of contacts for 5'-end interactions. Unconventional interactions of PliAgo with the 5'-phosphate of guide DNA define its new position within pAgo and shift the site of target RNA cleavage in comparison with known Argonautes. The specificity for RNA over DNA is defined by ribonucleotide residues at the cleavage site. The analysed pAgos sense mismatches and modifications in the RNA target. The results broaden our understanding of prokaryotic defense systems and extend the spectrum of programmable nucleases with potential use in RNA technology.


Asunto(s)
Proteínas Argonautas , ARN , Proteínas Argonautas/metabolismo , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Endonucleasas/metabolismo , Células Procariotas/metabolismo , ARN/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
11.
J Biol Chem ; 298(7): 102099, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35667439

RESUMEN

Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo∗) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of Escherichia coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees, and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , Escherichia coli , Supresión Genética , Reparación del ADN , Replicación del ADN , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , Transcripción Genética
12.
Nucleic Acids Res ; 49(7): 4054-4065, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33744962

RESUMEN

Argonaute proteins are programmable nucleases that are found in both eukaryotes and prokaryotes and provide defense against invading genetic elements. Although some prokaryotic argonautes (pAgos) were shown to recognize RNA targets in vitro, the majority of studied pAgos have strict specificity toward DNA, which limits their practical use in RNA-centric applications. Here, we describe a unique pAgo nuclease, KmAgo, from the mesophilic bacterium Kurthia massiliensis that can be programmed with either DNA or RNA guides and can precisely cleave both DNA and RNA targets. KmAgo binds 16-20 nt long 5'-phosphorylated guide molecules with no strict specificity for their sequence and is active in a wide range of temperatures. In bacterial cells, KmAgo is loaded with small DNAs with no obvious sequence preferences suggesting that it can uniformly target genomic sequences. Mismatches between the guide and target sequences greatly affect the efficiency and precision of target cleavage, depending on the mismatch position and the nature of the reacting nucleic acids. Target RNA cleavage by KmAgo depends on the formation of secondary structure indicating that KmAgo can be used for structural probing of RNA. These properties of KmAgo open the way for its use for highly specific nucleic acid detection and cleavage.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Planococcaceae/enzimología , ARN Bacteriano/metabolismo , Unión Proteica , Especificidad por Sustrato
13.
RNA Biol ; 18(11): 2028-2037, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33573428

RESUMEN

The bacterial σ factor plays the central role in promoter recognition by RNA polymerase (RNAP). The primary σ factor, involved in transcription of housekeeping genes, was also shown to participate in the initiation of RNA synthesis and promoter escape by RNAP. In the open promoter complex, the σ finger formed by σ region 3.2 directly interacts with the template DNA strand upstream of the transcription start site. Here, we analysed the role of the σ finger in transcription initiation by four alternative σ factors in Escherichia coli, σ38, σ32, σ28 and σ24. We found that deletions of the σ finger to various extent compromise the activity of RNAP holoenzymes containing alternative σ factors, especially at low NTP concentrations. All four σs are able to utilize NADH as a noncanonical priming substrate but it has only mild effects on the efficiency of transcription initiation. The mediators of the stringent response, transcription factor DksA and the alarmone ppGpp decrease RNAP activity and promoter complex stability for all four σ factors on tested promoters. For all σs except σ38, deletions of the σ finger conversely increase the stability of promoter complexes and decrease their sensitivity to DksA and ppGpp. The result suggests that the σ finger plays a universal role in transcription initiation by alternative σ factors and sensitizes promoter complexes to the action of global transcription regulators DksA and ppGpp by modulating promoter complex stability.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/metabolismo , Factor sigma/metabolismo , Sitio de Iniciación de la Transcripción , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Regiones Promotoras Genéticas , ARN Bacteriano/genética , Factor sigma/genética , Transcripción Genética
14.
Nat Commun ; 12(1): 528, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483500

RESUMEN

Ribosomal RNA (rRNA) is most highly expressed in rapidly growing bacteria and is drastically downregulated under stress conditions by the global transcriptional regulator DksA and the alarmone ppGpp. Here, we determined cryo-electron microscopy structures of the Escherichia coli RNA polymerase (RNAP) σ70 holoenzyme during rRNA promoter recognition with and without DksA/ppGpp. RNAP contacts the UP element using dimerized α subunit carboxyl-terminal domains and scrunches the template DNA with the σ finger and ß' lid to select the transcription start site favorable for rapid promoter escape. Promoter binding induces conformational change of σ domain 2 that opens a gate for DNA loading and ejects σ1.1 from the RNAP cleft to facilitate open complex formation. DksA/ppGpp binding also opens the DNA loading gate, which is not coupled to σ1.1 ejection and impedes open complex formation. These results provide a molecular basis for the exceptionally active rRNA transcription and its vulnerability to DksA/ppGpp.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas/genética , ARN Ribosómico/genética , Transcripción Genética , Microscopía por Crioelectrón , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestructura , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/metabolismo , Factor sigma/química , Factor sigma/metabolismo , Factor sigma/ultraestructura , Sitio de Iniciación de la Transcripción
15.
Biochem Biophys Res Commun ; 533(4): 1484-1489, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33333714

RESUMEN

In contrast to eukaryotic Argonaute proteins that act on RNA targets, prokaryotic Argonautes (pAgos) can target DNA, using either small RNA or small DNA guides for its recognition. Since pAgos can recognize only a single strand of DNA and lack a helicase activity, it remains unknown how double-stranded DNA can be bound both in vitro and in vivo. Here, using in vitro reconstitution and footprinting assays we analyze formation of specific complexes with target DNA by a catalytically inactive pAgo, RsAgo from Rhodobacter sphaeroides programmed with small guide RNAs. We showed that RsAgo can recognize a specific site in double-stranded DNA after stepwise reconstitution of the complex from individual oligonucleotides or after prior melting of the DNA target. When bound, RsAgo stabilizes an open DNA bubble corresponding to the length of the guide molecule and protects the target DNA from nuclease cleavage. The results suggest that RsAgo and, possibly, other RNA-guided pAgos cannot directly attack double-stranded DNA and likely require DNA opening by other cellular processes for their action.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , ADN/química , ADN/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Unión Proteica , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Rhodobacter sphaeroides/genética
16.
Nucleic Acids Res ; 48(19): 10802-10819, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32997144

RESUMEN

In bacteria, rapid adaptation to changing environmental conditions depends on the interplay between housekeeping and alternative σ factors, responsible for transcription of specific regulons by RNA polymerase (RNAP). In comparison with alternative σ factors, primary σs contain poorly conserved region 1.1, whose functions in transcription are only partially understood. We found that a single mutation in region 1.1 in Escherichia coli σ70 rewires transcription regulation during cell growth resulting in profound phenotypic changes. Despite its destabilizing effect on promoter complexes, this mutation increases the activity of rRNA promoters and also decreases RNAP sensitivity to the major regulator of stringent response DksA. Using total RNA sequencing combined with single-cell analysis of gene expression we showed that changes in region 1.1 disrupt the balance between the "greed" and "fear" strategies thus making the cells more susceptible to environmental threats and antibiotics. Our results reveal an unexpected role of σ region 1.1 in growth-dependent transcription regulation and suggest that changes in this region may facilitate rapid switching of RNAP properties in evolving bacterial populations.


Asunto(s)
División Celular , Regulación Bacteriana de la Expresión Génica , Factor sigma/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Puntual , Dominios Proteicos , Factor sigma/química , Factor sigma/metabolismo , Transcripción Genética
17.
Nature ; 587(7835): 632-637, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32731256

RESUMEN

Members of the conserved Argonaute protein family use small RNA guides to locate their mRNA targets and regulate gene expression and suppress mobile genetic elements in eukaryotes1,2. Argonautes are also present in many bacterial and archaeal species3-5. Unlike eukaryotic proteins, several prokaryotic Argonaute proteins use small DNA guides to cleave DNA, a process known as DNA interference6-10. However, the natural functions and targets of DNA interference are poorly understood, and the mechanisms of DNA guide generation and target discrimination remain unknown. Here we analyse the activity of a bacterial Argonaute nuclease from Clostridium butyricum (CbAgo) in vivo. We show that CbAgo targets multicopy genetic elements and suppresses the propagation of plasmids and infection by phages. CbAgo induces DNA interference between homologous sequences and triggers DNA degradation at double-strand breaks in the target DNA. The loading of CbAgo with locus-specific small DNA guides depends on both its intrinsic endonuclease activity and the cellular double-strand break repair machinery. A similar interaction was reported for the acquisition of new spacers during CRISPR adaptation, and prokaryotic genomes that encode Ago nucleases are enriched in CRISPR-Cas systems. These results identify molecular mechanisms that generate guides for DNA interference and suggest that the recognition of foreign nucleic acids by prokaryotic defence systems involves common principles.


Asunto(s)
Proteínas Argonautas/metabolismo , Clostridium butyricum/enzimología , ADN/metabolismo , Silenciador del Gen , Bacteriófagos/genética , Bacteriófagos/fisiología , Biocatálisis , Sistemas CRISPR-Cas , Clostridium butyricum/genética , Clostridium butyricum/virología , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Exodesoxirribonucleasa V/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Homología de Secuencia de Ácido Nucleico
18.
J Biol Chem ; 295(28): 9583-9595, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32439804

RESUMEN

DNA lesions can severely compromise transcription and block RNA synthesis by RNA polymerase (RNAP), leading to subsequent recruitment of DNA repair factors to the stalled transcription complex. Recent structural studies have uncovered molecular interactions of several DNA lesions within the transcription elongation complex. However, little is known about the role of key elements of the RNAP active site in translesion transcription. Here, using recombinantly expressed proteins, in vitro transcription, kinetic analyses, and in vivo cell viability assays, we report that point amino acid substitutions in the trigger loop, a flexible element of the active site involved in nucleotide addition, can stimulate translesion RNA synthesis by Escherichia coli RNAP without altering the fidelity of nucleotide incorporation. We show that these substitutions also decrease transcriptional pausing and strongly affect the nucleotide addition cycle of RNAP by increasing the rate of nucleotide addition but also decreasing the rate of translocation. The secondary channel factors DksA and GreA modulated translesion transcription by RNAP, depending on changes in the trigger loop structure. We observed that although the mutant RNAPs stimulate translesion synthesis, their expression is toxic in vivo, especially under stress conditions. We conclude that the efficiency of translesion transcription can be significantly modulated by mutations affecting the conformational dynamics of the active site of RNAP, with potential effects on cellular stress responses and survival.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/biosíntesis , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , ARN Bacteriano/genética
19.
RNA Biol ; 17(5): 677-688, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32013676

RESUMEN

Members of the conserved Argonaute (Ago) protein family provide defence against invading nucleic acids in eukaryotes in the process of RNA interference. Many prokaryotes also contain Ago proteins that are predicted to be active nucleases; however, their functional activities in host cells remain poorly understood. Here, we characterize the in vitro and in vivo properties of the SeAgo protein from the mesophilic cyanobacterium Synechococcus elongatus. We show that SeAgo is a DNA-guided nuclease preferentially acting on single-stranded DNA targets, with non-specific guide-independent activity observed for double-stranded substrates. The SeAgo gene is steadily expressed in S. elongatus; however, its deletion or overexpression does not change the kinetics of cell growth. When purified from its host cells or from heterologous E. coli, SeAgo is loaded with small guide DNAs whose formation depends on the endonuclease activity of the argonaute protein. SeAgo co-purifies with SSB proteins suggesting that they may also be involved in DNA processing. The SeAgo-associated small DNAs are derived from diverse genomic locations, with certain enrichment for the proposed sites of chromosomal replication initiation and termination, but show no preference for an endogenous plasmid. Therefore, promiscuous genome sampling by SeAgo does not have great effects on cell physiology and plasmid maintenance.


Asunto(s)
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Genoma Bacteriano , Genómica , Synechococcus/genética , Synechococcus/metabolismo , Proteínas Argonautas/química , Secuencia de Bases , Sitios de Unión , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Genómica/métodos , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Proteínas Recombinantes , Relación Estructura-Actividad
20.
Biochimie ; 170: 57-64, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31883957

RESUMEN

Bacteriophage-encoded transcription antiterminators play essential roles in the regulation of gene expression during infection. Here, we characterize the effects of the antiterminator protein P7 of bacteriophage Xp10 on transcriptional pausing by Xanthomonas oryzae RNA polymerase (RNAP) at different types of pause-inducing signals. When acting alone, P7 inhibits only hairpin-stabilized pauses, likely by preventing hairpin formation. In the presence of NusA, P7 also suppresses backtracking-stabilized pauses and the his elemental pause, but not the consensus elemental pause, suggesting that these pause signals may be mechanistically different. Thus, P7 and other bacteriophage proteins that bind near the RNA exit channel of RNAP have evolved to regulate transcription by suppressing RNAP pausing at a subset of regulatory signals, and to co-opt NusA in doing so.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Bacteriano/genética , Transcripción Genética , Proteínas Virales/metabolismo , Xanthomonas/enzimología , Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Bacteriano/metabolismo , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA