Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121394, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35660146

RESUMEN

People afflicted with sickle cell disease (SCD) experience severe deterioration in quality of life. The disease is characterized by debilitating pain, anemia, and increased susceptibility to life threatening infections. This genetic disorder is endemic to many parts of the world. Extensive and accurate screening of individuals with sickle cell trait (SCT) in the population, coupled with genetic counselling can inhibit the propagation of the disease. The gold-standard techniques for the detection of sickle hemoglobin, such as capillary electrophoresis, HPLC, and genetic testing, are prohibitively expensive and time-consuming. Mass screening is usually conducted with a low-cost test called the solubility test, which does not offer high specificity. This study proposes a game-changing single-step low-cost method for rapidly yet accurately screening and diagnosing SCD and SCT. This method relies on the hitherto unexplored differences in the optical absorbance between diseased, trait, and normal blood samples, under deoxygenated conditions. The proposed method was tested in two phases of clinical validation: a pilot study and a blind study. A total of 438 patient samples were tested using the proposed method across the two phases. The proposed method offers an average accuracy, sensitivity, and specificity of 97.6%, 96.9%, and 98.6%, respectively. The proposed test has the potential to obliviate the conventional two-step process of screening and diagnostic tests as it can be used at the point-of-care with minimal training and yet yield results reliable enough to assess disability benefit claims.


Asunto(s)
Anemia de Células Falciformes , Rasgo Drepanocítico , Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/genética , Humanos , Proyectos Piloto , Sistemas de Atención de Punto , Calidad de Vida , Rasgo Drepanocítico/diagnóstico , Rasgo Drepanocítico/epidemiología
2.
Acta Biomater ; 37: 155-64, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27079762

RESUMEN

UNLABELLED: We report here structure-property relationship between linear and branched polyethylene imines by examining their antimicrobial activities against wide range of pathogens. Both the polymers target the cytoplasmic membrane of bacteria and yeasts, eliciting rapid microbicidal properties. Using multiscale molecular dynamic simulations, we showed that, in both fully or partially protonated forms LPEI discriminates between mammalian and bacterial model membranes whereas BPEI lacks selectivity for both the model membranes. Simulation results suggest that LPEI forms weak complex with the zwitterionic lipids whereas the side chain amino groups of BPEI sequester the zwitterionic lipids by forming tight complex. Consistent with these observations, label-free cell impedance measurements, cell viability assays and high content analysis indicate that BPEI is cytotoxic to human epithelial and fibroblasts cells. Crosslinking of BPEI onto electrospun gelatin mats attenuate the cytotoxicity for fibroblasts while retaining the antimicrobial activity against Gram-positive and yeasts strains. PEI crosslinked gelatin mats elicit bactericidal activity by contact-mediated killing and durable to leaching for 7days. The potent antimicrobial activity combined with enhanced selectivity of the crosslinked ES gelatin mats would expand the arsenel of biocides in the management of superficial skin infections. The contact-mediated microbicidal properties may avert antimicrobial resistance and expand the diversity of applications to prevent microbial contamination. STATEMENT OF SIGNIFICANCE: Current commercially available advanced wound dressings are either impregnated with metallic silver or silver salts which have side effects or may not avert antimicrobial resistance. In this article, we have used multidisciplinary approach comprising of computational, chemical and biological methods to understand the antimicrobial properties and biocompatibility of linear (LPEI) and branched (BPEI) polyethylenimines. We then applied this knowledge to develop dual purpose wound dressings containing these polymers, which encourages healing while maintain antimicrobial activity. In addition, the approach can be expanded to rationalize the antimicrobial vs. cytotoxicity of other cationic polymers and the method of crosslinking would enhance their potentials as biocides for advanced materials.


Asunto(s)
Vendajes , Desinfectantes/farmacología , Membranas Artificiales , Polietileneimina/química , Animales , Antibacterianos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Reactivos de Enlaces Cruzados/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Gelatina/química , Humanos , Indoles/química , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Polímeros/química , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA