Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Angew Chem Int Ed Engl ; 63(24): e202400474, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38590031

RESUMEN

Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have shown great promises to overcome the performance upper limit of polymeric membranes for various gas separation processes. However, the gas separation properties of the MMMs largely depend on the MOF-polymer interfacial compatibility which is a metric difficult to quantify. In most cases, whether a MOF filler and a polymer matrix make a good pair is not revealed until the gas transport experiments are performed. This is because there is a lack of characterization techniques to directly probe the MOF-polymer interfacial compatibility. In this work, we demonstrate a self-sorting method to rank the interface compatibility among several MOF-polymer pairs. By mixing one MOF with two polymers in an MMM, the demixing of two polymers will form two polymer domains. The MOF particles will preferably partition into the "preferred" polymer domain due to their higher interfacial affinity. By scanning different polymer pairs, a rank of MOF-polymer interfacial compatibility from high to low can be obtained. Moreover, based on this ranking, it was also found that a highly compatible MOF-polymer pair suggested by this method also corresponds to a more predictable MMM gas separation performance.

2.
Nanoscale ; 16(19): 9186-9196, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38647659

RESUMEN

Microporous materials, including zeolites, metal-organic frameworks, and cage compounds, offer diverse functionalities due to their unique dynamics and guest confinement properties. These materials play a significant role in separation, catalysis, and sensing, but their complexity hinders exploration using traditional atomistic simulations. This review explores collective variables (CVs) paired with enhanced sampling as a powerful approach to enable efficient investigation of key features in microporous materials. We highlight successful applications of CVs in studying adsorption, diffusion, phase transitions, and mechanical properties, demonstrating their crucial role in guiding material design and optimisation. The future of CVs lies in integration with techniques like machine learning, allowing for enhanced efficiency and accuracy. By tailoring CVs to specific materials and developing multi-scale approaches we can further unlock the intricacies of these fascinating materials. Simulations are a cornerstone in unravelling the complexities of microporous materials and are crucial for our future understanding.

3.
Commun Chem ; 7(1): 63, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519628
4.
Inorg Chem ; 62(47): 19208-19217, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37963068

RESUMEN

Nanoconfinement in metal-organic framework (MOF) pores can lead to the isolation of unusual or reactive metal complexes. However, MOFs that support the stabilization and precise structural elucidation of metal complexes and small metal clusters are rare. Here, we report a thermally and chemically stable zirconium-based MOF (University of Adelaide Material-1001, UAM-1001) with a high density of free bis-pyrazolyl units that can confine mono- and dinuclear metal complexes. The precursor MOF, UAM-1000, has a high degree of structural flexibility, but post synthetic modification with a bracing linker, biphenyl-4,4'-dicarboxylic acid, partially rigidifies the MOF (UAM-1001). This allows "matrix isolation" and detailed structural elucidation of postsynthetically added dimeric complexes bound within a tetradentate binding site formed by two linkers. Dimeric species [Co2Cl4], [Cu2Cl4], [Ni2Cl3(H2O)2]Cl, and [Rh2(CO)3Cl2] were successfully isolated in UAM-1001 and characterized by single-crystal X-ray diffraction. Comparison of the UAM-1001 isolated species with similar complexes in the solid state reveals that UAM-1001 can significantly distort the structures and enforce notably shorter metal-metal distances. For example, MOF tethering allows isolation of a [Cu2Cl4] complex that rapidly reacts with water in the solid state. The stability, porosity, and modulated flexibility of UAM-1001 provide an ideal platform material for the isolation and study of new dimeric complexes and their reactivity.

5.
Angew Chem Int Ed Engl ; 62(49): e202314378, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37816684

RESUMEN

One of the key challenges of metallo-supramolecular chemistry is to maintain the ease of self-assembly but, at the same time, create structures of increasingly high levels of complexity. In palladium(II) quadruply stranded lantern-shaped cages, this has been achieved through either 1) the formation of heteroleptic (multi-ligand) assemblies, or 2) homoleptic assemblies from low-symmetry ligands. Heteroleptic cages formed from low-symmetry ligands, a hybid of these two approaches, would add an additional rich level of complexity but no examples of these have been reported. Here we use a system of ancillary complementary ligand pairings at the termini of cage ligands to target heteroleptic assemblies: these complementary pairs can only interact (through coordination to a single Pd(II) metal ion) between ligands in a cis position on the cage. Complementarity between each pair (and orthogonality to other pairs) is controlled by denticity (tridentate to monodentate or bidentate to bidentate) and/or hydrogen-bonding capability (AA to DD or AD to DA). This allows positional and orientational control over ligands with different ancillary sites. By using this approach, we have successfully used low-symmetry ligands to synthesise complex heteroleptic cages, including an example with four different low-symmetry ligands.

6.
Chem Asian J ; 18(20): e202300673, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37643994

RESUMEN

We report flexible [Pd(L)2 ]2+ complexes where there is self-recognition, driven by π-π interactions between electron-rich aromatic arms and the cationic regions they are tethered to. This self-recognition hampers the association of these molecules with aromatic molecular targets in solution. In one case, this complex can be reversibly converted to an 'open' [Pd2 (L)2 ]4+ macrocycle through introduction of more metal ion. This is accomplished by the ligand having two bidentate binding sites: a 2-pyridyl-1,2,3-triazole site, and a bis-1,2,3-triazole site. Due to favourable hydrogen bonding, the 2-pyridyl-1,2,3-triazole units reliably coordinate in the [Pd(L)2 ]2+ complex to control speciation: a second equivalent of Pd(II) is required to enforce coordination to bis-triazole sites and form the macrocycle. The macrocycle interacts with a molecular substrate with higher affinity. In this fashion we are able to use stoichiometry to reversibly switch between two different species and regulate guest binding.

7.
Nat Commun ; 14(1): 3223, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270577

RESUMEN

A unique feature of metal-organic frameworks (MOFs) in contrast to rigid nanoporous materials is their structural switchabilty offering a wide range of functionality for sustainable energy storage, separation and sensing applications. This has initiated a series of experimental and theoretical studies predominantly aiming at understanding the thermodynamic conditions to transform and release gas, but the nature of sorption-induced switching transitions remains poorly understood. Here we report experimental evidence for fluid metastability and history-dependent states during sorption triggering the structural change of the framework and leading to the counterintuitive phenomenon of negative gas adsorption (NGA) in flexible MOFs. Preparation of two isoreticular MOFs differing by structural flexibility and performing direct in situ diffusion studies aided by in situ X-ray diffraction, scanning electron microscopy and computational modelling, allowed assessment of n-butane molecular dynamics, phase state, and the framework response to obtain a microscopic picture for each step of the sorption process.

8.
Adv Mater ; 35(25): e2211478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36934320

RESUMEN

Micropatterning crystalline materials with oriented pores is necessary for the fabrication of devices with anisotropic properties. Crystalline and porous metal-organic frameworks (MOFs) are ideal materials as their chemical and structural mutability enables precise tuning of functional properties for applications ranging from microelectronics to photonics. Herein, a patternable oriented MOF film is designed: by using a photomask under X-ray exposure, the MOF film decomposes in the irradiated areas, remaining intact in the unexposed regions. The MOF film acts simultaneously as a resist and as functional porous material. While the heteroepitaxial growth from aligned Cu(OH)2 nanobelts is used to deposit oriented MOF films, the sensitivity to radiation is achieved by integrating a brominated dicarboxylate ligand (Br2 BDC) into a copper-based MOF Cu2 L2 DABCO (DABCO = 1,4-diazabicyclo[2.2.2]octane; L = BDC/Br2 BDC). The lithographed samples act as diffraction gratings upon irradiation with a laser, thus confirming the quality of the extended MOF micropattern. Furthermore, the oriented MOF patterns are functionalized with fluorescent dyes. As a result, by rotating the polarization angle of the laser excitation, the alignment of the dye in the MOF is demonstrated. By controlling the functional response to light, this MOF patterning protocol can be used for the microfabrication of optical components for photonic devices.

9.
Dalton Trans ; 52(9): 2816-2824, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36752342

RESUMEN

The nature of metal in the isomorphous flexible metal-organic frameworks is often reported to influence flexibility and responsivity. A prominent example of such behaviour is the DUT-8(M) family ([M2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane), where the isostructural compounds with Ni, Zn, Co, and Cu in the paddle wheel cluster are known. The macro-sized crystals of Ni, Co, and Zn based compounds transform to the closed pore (cp) phase under desolvation and show typical gate opening behaviour upon adsorption. The choice of metal, in this case, allows the adjustment of switching kinetics, selectivity in adsorption, and gate-opening pressures. The submicron-sized crystals of of Ni, Co, and Zn based compounds remain in the open pore (op) phase after desolvation. In this contribution, we demonstrate that the presence of Cu in the paddle wheel leads to fundamentally different flexible behaviour. The DUT-8(Cu) desolvation does not lead to the formation of the cp phase, independent of the particle size regime. However, according to in situ powder diffraction analysis, the desolvated, macro-sized crystals of DUT-8(Cu)_op show breathing upon adsorption of CO2 at 195 K. The submicron-sized particles show rigid, nonresponsive behaviour.

10.
Proc Natl Acad Sci U S A ; 120(3): e2212075120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634137

RESUMEN

Liquid methanol has the potential to be the hydrogen energy carrier and storage medium for the future green economy. However, there are still many challenges before zero-emission, affordable molecular H2 can be extracted from methanol with high performance. Here, we present noble-metal-free Cu-WC/W plasmonic nanohybrids which exhibit unsurpassed solar H2 extraction efficiency from pure methanol of 2,176.7 µmol g-1 h-1 at room temperature and normal pressure. Macro-to-micro experiments and simulations unveil that local reaction microenvironments are generated by the coperturbation of WC/W's lattice strain and infrared-plasmonic electric field. It enables spontaneous but selective zero-emission reaction pathways. Such microenvironments are found to be highly cooperative with solar-broadband-plasmon-excited charge carriers flowing from Cu to WC surfaces for efficient stable CH3OH plasmonic reforming with C3-dominated liquid products and 100% selective gaseous H2. Such high efficiency, without any COx emission, can be sustained for over a thousand-hour operation without obvious degradation.

11.
Angew Chem Int Ed Engl ; 61(39): e202210476, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35922393

RESUMEN

Self-assembly makes metallo-interlocked architectures attractive targets, but being in equilibrium with smaller species means that they can suffer from dilution effects. We show that a junctioned system gives rise to a [Pd4 (L)2 ]8+ trefoil entangled tetrahedron irrespective of concentration. Heating the sample reversibly shifts the equilibrium from the knot to an isomeric non-interlocked dual metallo-cycle, demonstrating that thermodynamic equilibria can still be exploited for switching even in the absence of concentration effects.

12.
ACS Appl Mater Interfaces ; 14(30): 34538-34551, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35867807

RESUMEN

A porous, spray-deposited Al2O3-based separator was developed to enable the direct deposition of an electrode/separator/electrode Li-ion battery full cell assembly in a single operation. The optimized sprayed separator consisted of 50 nm Al2O3 particles, 1 wt % poly(acrylic acid), and 5 wt % styrene-butadiene rubber, deposited from an 80:20 vol % suspension of water and isopropanol. Separators between 5 and 22 µm thick had consistent and similar porosity of ∼58%, excellent wettability, thermal stability to at least 180 °C, adequate electrochemical stability and high effective ionic conductivity of ∼1 mS cm-1 at room temperature in an EC/DMC electrolyte, roughly double that of a conventional polypropylene separator. A sequentially deposited three-layer LiFePO4/Al2O3/Li4Ti5O12 full cell, the first of its kind, showed similar rate performance to an identical cell with a conventional polypropylene separator, with a capacity of ∼50 mAh g-1 at 30 C. However, after cycling at 2 C for 400 cycles, Al2O3 separator full cells retained 96.3% capacity, significantly more than conventional full cells with a capacity of 79.2% remaining.

13.
Chemistry ; 28(55): e202201281, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35802315

RESUMEN

DUT-8(Ni) metal-organic framework (MOF) belongs to the family of flexible pillared layer materials. The desolvated framework can be obtained in the open pore form (op) or in the closed pore form (cp), depending on the crystal size regime. In the present work, we report on the behaviour of desolvated DUT-8(Ni) at elevated temperatures. For both, op and cp variants, heating causes a structural transition, leading to a new, crystalline compound, containing two interpenetrated networks. The state of the framework before transition (op vs. cp) influences the transition temperature: the small particles of the op phase transform at significantly lower temperature in comparison to the macroparticles of the cp phase, transforming close to the decomposition temperature. The new compound, confined closed pore phase (ccp), was characterized by powder X-ray diffraction and spectroscopic techniques, such as IR, EXAFS, and positron annihilation lifetime spectroscopy (PALS). Thermal effects of structural transitions were studied using differential scanning calorimetry (DSC), showing an overall exothermic effect of the process, involving bond breaking and reformation. Theoretical calculations reveal the energetics, driving the observed temperature induced phase transition.

14.
Adv Mater ; 34(27): e2201502, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35603497

RESUMEN

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible.


Asunto(s)
Reproducibilidad de los Resultados , Adsorción , Porosidad
15.
Sci Adv ; 8(15): eabn7035, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35417239

RESUMEN

Flexible metal-organic frameworks that show reversible guest-induced phase transitions between closed and open pore phases have enormous potential for highly selective, energy-efficient gas separations. Here, we present the gate-opening process of DUT-8(Ni) that selectively responds to D2, whereas no response is observed for H2 and HD. In situ neutron diffraction directly reveals this pressure-dependent phase transition. Low-temperature thermal desorption spectroscopy measurements indicate an outstanding D2-over-H2 selectivity of 11.6 at 23.3 K, with high D2 uptake. First-principles calculations coupled with statistical thermodynamics predict the isotope-selective gate opening, rationalized by pronounced nuclear quantum effects. Simulations suggest DUT-8(Ni) to remain closed in the presence of HT, while it also opens for DT and T2, demonstrating gate opening as a highly effective approach for isotopolog separation.

16.
Nat Commun ; 13(1): 1951, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35414051

RESUMEN

Although light is a prominent stimulus for smart materials, the application of photoswitches as light-responsive triggers for phase transitions of porous materials remains poorly explored. Here we incorporate an azobenzene photoswitch in the backbone of a metal-organic framework producing light-induced structural contraction of the porous network in parallel to gas adsorption. Light-stimulation enables non-invasive spatiotemporal control over the mechanical properties of the framework, which ultimately leads to pore contraction and subsequent guest release via negative gas adsorption. The complex mechanism of light-gated breathing is established by a series of in situ diffraction and spectroscopic experiments, supported by quantum mechanical and molecular dynamic simulations. Unexpectedly, this study identifies a novel light-induced deformation mechanism of constrained azobenzene photoswitches relevant to the future design of light-responsive materials.

17.
Front Chem ; 9: 772059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858946

RESUMEN

Miniaturization is a key aspect of materials science. Owing to the increase in quality experimental and computational tools available to researchers, it has become clear that the crystal size and morphology of porous framework materials, including metal-organic frameworks and covalent organic frameworks, play a vital role in defining the physicochemical behaviour of these materials. However, given the multiscale and multidisciplinary challenges associated with establishing how crystal size and morphology affect the structure and behaviour of a material-from local to global structural modifications and from static to dynamic effects-a comprehensive mechanistic understanding of size and morphology effects is missing. Herein, we provide our perspective on the current state-of-the-art of this topic, drawn from various complementary disciplines. From a fundamental point of view, we discuss how controlling the crystal size and morphology can alter the mechanical and adsorption properties of porous framework materials and how this can impact phase stability. Special attention is also given to the quest to develop new computational tools capable of modelling these multiscale effects. From a more applied point of view, given the recent progress in this research field, we highlight the importance of crystal size and morphology control in drug delivery. Moreover, we provide an outlook on how to advance each discussed field by size and morphology control, which would open new design opportunities for functional porous framework materials.

18.
Chem Sci ; 12(44): 14893-14900, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34820105

RESUMEN

Stimuli-responsive metal-organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a stimuli-responsive MOF, 1·[CuCl], that shows temperature dependent switching from a rigid to flexible phase. This conversion is associated with a dramatic reversible change in the gas adsorption properties, from Type-I to S-shaped isotherms. The structural transition is facilitated by a novel mechanism that involves both a change in coordination number (3 to 2) and geometry (trigonal planar to linear) of the post-synthetically added Cu(i) ion. This process serves to 'unlock' the framework rigidity imposed by metal chelation of the bis-pyrazolyl groups and realises the intrinsic flexibility of the organic link.

19.
Dalton Trans ; 50(30): 10423-10435, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34240094

RESUMEN

The trapping of paraffins is beneficial compared to selective olefin adsorption for adsorptive olefin purification from a process engineering point of view. Here we demonstrate the use of a series of Zn2(X-bdc)2(dabco) (where X-bdc2- is bdc2- = 1,4-benzenedicarboxylate with substituting groups X, DM-bdc2- = 2,5-dimethyl-1,4-benzenedicarboxylate or TM-bdc2- = 2,3,5,6-tetramethyl-1,4-benzenedicarboxylate and dabco = diazabicyclo[2.2.2.]octane) metal-organic frameworks (MOFs) for the adsorptive removal of ethane from ethylene streams. The best performing material from this series is Zn2(TM-bdc)2(dabco) (DMOF-TM), which shows a high ethane uptake of 5.31 mmol g-1 at 110 kPa, with a good IAST selectivity of 1.88 towards ethane over ethylene. Through breakthrough measurements a high productivity of 13.1 L kg-1 per breakthrough is revealed with good reproducibility over five consecutive cycles. Molecular simulations show that the methyl groups of DMOF-TM are forming a van der Waals trap with the methylene groups from dabco, snuggly fitting the ethane. Further, rarely used high pressure coadsorption measurements, in pressure regimes that most scientific studies on hydrocarbon separation on MOFs ignore, reveal an increase in ethane capacity and selectivity for binary mixtures with increased pressures. The coadsorption measurements reveal good selectivity of 1.96 at 1000 kPa, which is verified also through IAST calculations up to 3000 kPa. This study overall showcases the opportunities that pore engineering by alkyl group incorporation and pressure increase offer to improve hydrocarbon separation in reticular materials.

20.
Chemistry ; 27(37): 9708-9715, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33871114

RESUMEN

The switching mechanism of the flexible framework Zn4 O(benztb)1.5 (benztb=N,N,N',N'-benzidine tetrabenzoate), also known as DUT-13, was studied by advanced powder X-ray diffraction (PXRD) and gas physisorption techniques. In situ synchrotron PXRD experiments upon physisorption of nitrogen (77 K) and n-butane (273 K) shed light on the hitherto unnoticed guest-induced breathing in the MOF. The mechanism of contraction is based on the conformationally labile benztb ligand and accompanied by a reduction in specific pore volume from 2.03 cm3 g-1 in the open-pore phase to 0.91 cm3 g-1 in the contracted-pore phase. The high temperature limit for adsorption-induced contraction of 170 K, determined by systematic temperature variation of methane adsorption isotherms, indicates that the DUT-13 framework is softer than other mesoporous MOFs like DUT-49 and does not support the formation of overloaded metastable states required for negative gas-adsorption transitions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA