Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Microbiome ; 12(1): 159, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39198891

RESUMEN

BACKGROUND: Prokaryotic microbes have impacted marine biogeochemical cycles for billions of years. Viruses also impact these cycles, through lysis, horizontal gene transfer, and encoding and expressing genes that contribute to metabolic reprogramming of prokaryotic cells. While this impact is difficult to quantify in nature, we hypothesized that it can be examined by surveying virus-encoded auxiliary metabolic genes (AMGs) and assessing their ecological context. RESULTS: We systematically developed a global ocean AMG catalog by integrating previously described and newly identified AMGs and then placed this catalog into ecological and metabolic contexts relevant to ocean biogeochemistry. From 7.6 terabases of Tara Oceans paired prokaryote- and virus-enriched metagenomic sequence data, we increased known ocean virus populations to 579,904 (up 16%). From these virus populations, we then conservatively identified 86,913 AMGs that grouped into 22,779 sequence-based gene clusters, 7248 (~ 32%) of which were not previously reported. Using our catalog and modeled data from mock communities, we estimate that ~ 19% of ocean virus populations carry at least one AMG. To understand AMGs in their metabolic context, we identified 340 metabolic pathways encoded by ocean microbes and showed that AMGs map to 128 of them. Furthermore, we identified metabolic "hot spots" targeted by virus AMGs, including nine pathways where most steps (≥ 0.75) were AMG-targeted (involved in carbohydrate, amino acid, fatty acid, and nucleotide metabolism), as well as other pathways where virus-encoded AMGs outnumbered cellular homologs (involved in lipid A phosphates, phosphatidylethanolamine, creatine biosynthesis, phosphoribosylamine-glycine ligase, and carbamoyl-phosphate synthase pathways). CONCLUSIONS: Together, this systematically curated, global ocean AMG catalog and analyses provide a valuable resource and foundational observations to understand the role of viruses in modulating global ocean metabolisms and their biogeochemical implications. Video Abstract.


Asunto(s)
Océanos y Mares , Agua de Mar , Agua de Mar/virología , Agua de Mar/microbiología , Metagenómica , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Células Procariotas/metabolismo , Células Procariotas/virología , Metagenoma , Redes y Vías Metabólicas/genética , Transferencia de Gen Horizontal , Fosfatidiletanolaminas/metabolismo
2.
iScience ; 27(6): 110092, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38952683

RESUMEN

The human gut microbiota comprises various microorganisms engaged in intricate interactions among themselves and with the host, affecting its health. While advancements in omics technologies have led to the inference of clear associations between microbiome composition and health conditions, we usually lack a causal and mechanistic understanding of these associations. For modeling mechanisms driving the interactions, we simulated the organism's metabolism using in silico genome-scale metabolic models (GEMs). We used multi-objective optimization to predict and explain metabolic interactions among gut microbes and an intestinal epithelial cell. We developed a score integrating model simulation results to predict the type (competition, neutralism, mutualism) and quantify the interaction between several organisms. This framework uncovered a potential cross-feeding for choline, explaining the predicted mutualism between Lactobacillus rhamnosus GG and the epithelial cell. Finally, we analyzed a five-organism ecosystem, revealing that a minimal microbiota can favor the epithelial cell's maintenance.

3.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230169, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39034696

RESUMEN

Marine plankton communities form intricate networks of interacting organisms at the base of the food chain, and play a central role in regulating ocean biogeochemical cycles and climate. However, predicting plankton community shifts in response to climate change remains challenging. While species distribution models are valuable tools for predicting changes in species biogeography under climate change scenarios, they generally overlook the key role of biotic interactions, which can significantly shape ecological processes and ecosystem responses. Here, we introduce a novel statistical framework, association distribution modelling (ADM), designed to model and predict ecological associations distribution in space and time. Applied on a Tara Oceans genome-resolved metagenomics dataset, the present-day biogeography of ADM-inferred marine plankton associations revealed four major biogeographic biomes organized along a latitudinal gradient. We predicted the evolution of these biome-specific communities in response to a climate change scenario, highlighting differential responses to environmental change. Finally, we explored the functional potential of impacted plankton communities, focusing on carbon fixation, outlining the predicted evolution of its geographical distribution and implications for ecosystem function.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Asunto(s)
Cambio Climático , Modelos Biológicos , Plancton , Plancton/fisiología , Cadena Alimentaria , Ecosistema , Organismos Acuáticos/fisiología , Océanos y Mares
4.
Sci Rep ; 14(1): 7041, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580694

RESUMEN

Data science is a powerful field for gaining insights, comparing, and predicting behaviors from datasets. However, the diversity of methods and hypotheses needed to abstract a dataset exhibits a lack of genericity. Moreover, the shape of a dataset, which structures its contained information and uncertainties, is rarely considered. Inspired by state-of-the-art manifold learning and hull estimations algorithms, we propose a novel framework, the datascape, that leverages topology and graph theory to abstract heterogeneous datasets. Built upon the combination of a nearest neighbor graph, a set of convex hulls, and a metric distance that respects the shape of the data, the datascape allows exploration of the dataset's underlying space. We show that the datascape can uncover underlying functions from simulated datasets, build predictive algorithms with performance close to state-of-the-art algorithms, and reveal insightful geodesic paths between points. It demonstrates versatility through ecological, medical, and simulated data use cases.

5.
Nat Commun ; 15(1): 126, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168083

RESUMEN

Microbial interactions are vital in maintaining ocean ecosystem function, yet their dynamic nature and complexity remain largely unexplored. Here, we use association networks to investigate possible ecological interactions in the marine microbiome among archaea, bacteria, and picoeukaryotes throughout different depths and geographical regions of the tropical and subtropical global ocean. Our findings reveal that potential microbial interactions change with depth and geographical scale, exhibiting highly heterogeneous distributions. A few potential interactions were global, meaning they occurred across regions at the same depth, while 11-36% were regional within specific depths. The bathypelagic zone had the lowest proportion of global associations, and regional associations increased with depth. Moreover, we observed that most surface water associations do not persist in deeper ocean layers despite microbial vertical dispersal. Our work contributes to a deeper understanding of the tropical and subtropical global ocean interactome, which is essential for addressing the challenges posed by global change.


Asunto(s)
Bacterias , Microbiota , Bacterias/genética , Archaea/genética , Consorcios Microbianos , Océanos y Mares , Agua de Mar/microbiología
6.
mSystems ; 8(5): e0049223, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37668446

RESUMEN

IMPORTANCE: In nature, organisms live in communities and not as isolated species, and their interactions provide a source of resilience to environmental disturbances. Despite their importance in ecology, human health, and industry, understanding how organisms interact in different environments remains an open question. In this work, we provide a novel approach that, only using genomic information, studies the metabolic phenotype exhibited by communities, where the exploration of suboptimal growth flux distributions and the composition of a community allows to unveil its capacity to respond to environmental changes, shedding light of the degrees of metabolic plasticity inherent to the community.


Asunto(s)
Microbiota , Humanos , Microbiota/genética , Ecología , Genómica
7.
ISME Commun ; 3(1): 83, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596349

RESUMEN

For decades, marine plankton have been investigated for their capacity to modulate biogeochemical cycles and provide fishery resources. Between the sunlit (epipelagic) layer and the deep dark waters, lies a vast and heterogeneous part of the ocean: the mesopelagic zone. How plankton composition is shaped by environment has been well-explored in the epipelagic but much less in the mesopelagic ocean. Here, we conducted comparative analyses of trans-kingdom community assemblages thriving in the mesopelagic oxygen minimum zone (OMZ), mesopelagic oxic, and their epipelagic counterparts. We identified nine distinct types of intermediate water masses that correlate with variation in mesopelagic community composition. Furthermore, oxygen, NO3- and particle flux together appeared as the main drivers governing these communities. Novel taxonomic signatures emerged from OMZ while a global co-occurrence network analysis showed that about 70% of the abundance of mesopelagic plankton groups is organized into three community modules. One module gathers prokaryotes, pico-eukaryotes and Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) from oxic regions, and the two other modules are enriched in OMZ prokaryotes and OMZ pico-eukaryotes, respectively. We hypothesize that OMZ conditions led to a diversification of ecological niches, and thus communities, due to selective pressure from limited resources. Our study further clarifies the interplay between environmental factors in the mesopelagic oxic and OMZ, and the compositional features of communities.

8.
Microbiome ; 11(1): 83, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37081491

RESUMEN

BACKGROUND: Microbial interactions are fundamental for Earth's ecosystem functioning and biogeochemical cycling. Nevertheless, they are challenging to identify and remain barely known. Omics-based censuses are helpful in predicting microbial interactions through the statistical inference of single (static) association networks. Yet, microbial interactions are dynamic and we have limited knowledge of how they change over time. Here, we investigate the dynamics of microbial associations in a 10-year marine time series in the Mediterranean Sea using an approach inferring a time-resolved (temporal) network from a single static network. RESULTS: A single static network including microbial eukaryotes and bacteria was built using metabarcoding data derived from 120 monthly samples. For the decade, we aimed to identify persistent, seasonal, and temporary microbial associations by determining a temporal network that captures the interactome of each individual sample. We found that the temporal network appears to follow an annual cycle, collapsing, and reassembling when transiting between colder and warmer waters. We observed higher association repeatability in colder than in warmer months. Only 16 associations could be validated using observations reported in literature, underlining our knowledge gap in marine microbial ecological interactions. CONCLUSIONS: Our results indicate that marine microbial associations follow recurrent temporal dynamics in temperate zones, which need to be accounted for to better understand the functioning of the ocean microbiome. The constructed marine temporal network may serve as a resource for testing season-specific microbial interaction hypotheses. The applied approach can be transferred to microbiome studies in other ecosystems. Video Abstract.


Asunto(s)
Ecosistema , Microbiota , Bacterias/genética , Consorcios Microbianos , Estaciones del Año , Interacciones Microbianas
9.
ISME J ; 17(5): 720-732, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841901

RESUMEN

The ever-increasing number of available microbial genomes and metagenomes provides new opportunities to investigate the links between niche partitioning and genome evolution in the ocean, especially for the abundant and ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus. Here, by combining metagenome analyses of the Tara Oceans dataset with comparative genomics, including phyletic patterns and genomic context of individual genes from 256 reference genomes, we show that picocyanobacterial communities thriving in different niches possess distinct gene repertoires. We also identify clusters of adjacent genes that display specific distribution patterns in the field (eCAGs) and are thus potentially involved in the same metabolic pathway and may have a key role in niche adaptation. Several eCAGs are likely involved in the uptake or incorporation of complex organic forms of nutrients, such as guanidine, cyanate, cyanide, pyrimidine, or phosphonates, which might be either directly used by cells, for example for the biosynthesis of proteins or DNA, or degraded to inorganic nitrogen and/or phosphorus forms. We also highlight the enrichment of eCAGs involved in polysaccharide capsule biosynthesis in Synechococcus populations thriving in both nitrogen- and phosphorus-depleted areas vs. low-iron (Fe) regions, suggesting that the complexes they encode may be too energy-consuming for picocyanobacteria thriving in the latter areas. In contrast, Prochlorococcus populations thriving in Fe-depleted areas specifically possess an alternative respiratory terminal oxidase, potentially involved in the reduction of Fe(III) to Fe(II). Altogether, this study provides insights into how phytoplankton communities populate oceanic ecosystems, which is relevant to understanding their capacity to respond to ongoing climate change.


Asunto(s)
Prochlorococcus , Synechococcus , Agua de Mar/microbiología , Ecosistema , Compuestos Férricos/metabolismo , Océanos y Mares , Synechococcus/genética , Synechococcus/metabolismo , Metagenoma , Familia de Multigenes , Nitrógeno/metabolismo , Fósforo/metabolismo , Prochlorococcus/genética , Filogenia
10.
Elife ; 112022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35920817

RESUMEN

Biogeographical studies have traditionally focused on readily visible organisms, but recent technological advances are enabling analyses of the large-scale distribution of microscopic organisms, whose biogeographical patterns have long been debated. Here we assessed the global structure of plankton geography and its relation to the biological, chemical, and physical context of the ocean (the 'seascape') by analyzing metagenomes of plankton communities sampled across oceans during the Tara Oceans expedition, in light of environmental data and ocean current transport. Using a consistent approach across organismal sizes that provides unprecedented resolution to measure changes in genomic composition between communities, we report a pan-ocean, size-dependent plankton biogeography overlying regional heterogeneity. We found robust evidence for a basin-scale impact of transport by ocean currents on plankton biogeography, and on a characteristic timescale of community dynamics going beyond simple seasonality or life history transitions of plankton.


Oceans are brimming with life invisible to our eyes, a myriad of species of bacteria, viruses and other microscopic organisms essential for the health of the planet. These 'marine plankton' are unable to swim against currents and should therefore be constantly on the move, yet previous studies have suggested that distinct species of plankton may in fact inhabit different oceanic regions. However, proving this theory has been challenging; collecting plankton is logistically difficult, and it is often impossible to distinguish between species simply by examining them under a microscope. However, within the last decade, a research schooner called Tara has travelled the globe to gather thousands of plankton samples. At the same time, advances in genomics have made it possible to identify species based only on fragments of their DNA sequence. To understand the hidden geography of plankton communities in Earth's oceans, Richter et al. pored over DNA from the Tara Oceans expedition. This revealed that, despite being unable to resist the flow of water, various planktonic species which live close to the surface manage to occupy distinct, stable provinces shaped by currents. Different sizes of plankton are distributed in different sized provinces, with the smallest organisms tending to inhabit the smallest areas. Comparing DNA similarities and speeds of currents at the ocean surface revealed how these might stretch and mix plankton communities. Plankton play a critical role in the health of the ocean and the chemical cycles of planet Earth. These results could allow deeper investigation by marine modellers, ecologists, and evolutionary biologists. Meanwhile, work is already underway to investigate how climate change might impact this hidden geography.


Asunto(s)
Ecosistema , Plancton , Genómica , Geografía , Océanos y Mares , Plancton/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA