Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Nat Prod ; 86(3): 533-540, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36787528

RESUMEN

The aggregation of the neuronal protein α-synuclein (α-syn) is intrinsically linked to the development and progression of Parkinson's disease (PD). Recently we screened the MeOH extracts from 283 marine invertebrates for α-syn binding activity using an affinity mass spectrometry (MS) binding assay and found that the extract of the ascidian Polycarpa procera displayed activity. A subsequent bioassay-guided purification led to the isolation of one new α-syn aggregation inhibitory butenolide procerolide E (3) and one new α-syn aggregation inhibitory diphenylbutyrate methyl procerolate A (5). Herein we report the structure elucidation of procerolide E (3) and methylprocerolate A (5) and α-syn aggregation inhibitory activity of procerolides C-E (1-3), methyl procerolate A (5) and procerone A (4). We also report the α-syn binding activity of 3-bromo-4-methoxyphenylacetamide (6) and a synthetic butenolide library, which has allowed us to determine α-syn aggregation inhibitory structure-activity relationships for this class of compounds.


Asunto(s)
Enfermedad de Parkinson , Urocordados , Animales , Humanos , alfa-Sinucleína/metabolismo , Urocordados/metabolismo , Enfermedad de Parkinson/metabolismo
2.
J Org Chem ; 84(23): 15226-15235, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31657574

RESUMEN

The efficient synthesis of a range of structurally related butenolides has been observed while we were exploring the substrate-scope of a Horner-Wadsworth-Emmons (HWE) reaction. While aliphatic aldehydes gave the expected HWE product, aromatic aldehydes furnished butenolides, resulting from the dimerization of the HWE product during desilylation of the initially formed HWE adduct. In addition to isolating butenolides in a high yield, we have also determined precisely when dimerization occurs.

3.
Angew Chem Int Ed Engl ; 56(52): 16664-16668, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29087610

RESUMEN

Poly(ortho ester)s (POEs) are well-known for their surface-eroding properties and hence present unique opportunities for controlled-release and tissue-engineering applications. Their development and wide-spread investigation has, however, been severely limited by challenging synthetic requirements that incorporate unstable intermediates and are therefore highly irreproducible. Herein, the first catalytic method for the synthesis of POEs using air- and moisture-stable vinyl acetal precursors is presented. The synthesis of a range of POE structures is demonstrated, including those that are extremely difficult to achieve by other synthetic methods. Furthermore, application of this chemistry permits efficient installation of functional groups through ortho ester linkages on an aliphatic polycarbonate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA