RESUMEN
The present study focuses on the two consecutive and markedly intense Saharan dust intrusion episodes that greatly affected southern Spain (Málaga) and, to a lesser extent, the Canary Islands (Tenerife), in March 2022. These two episodes were the result of atypical meteorological conditions in the region and resulted in record levels of aerosols in the air at the Málaga location. The activity levels of various natural and artificial radionuclides (7Be, 210Pb, 40K, 137Cs, 239Pu, 240Pu, 239+240Pu) and radioactive indicators (gross alpha and gross beta) were impacted by these events and the results are described herein. These episodes caused, for example, the activities of 137Cs in aerosol samples at the Málaga monitoring station to reach the highest concentrations ever recorded since high-volume aerosol monitoring started at this site in 2009. A link between the activity levels of 137Cs, 40K and gross alpha in the atmospheric aerosols and daily PM10 concentrations during the episodes is also reported. In addition, isotopic ratios are discussed in the context of the source and destination of the various anthropogenic radionuclides measured. The atmospheric residence time of aerosols during these episodes is also evaluated because it concerns how intrusions to the Canary Islands should be analysed. Finally, for the first time, the concentrations of 137Cs deposition by rainwater during a Saharan dust intrusion are reported and the deposition rate of these radionuclides during these episodes is discussed.
Asunto(s)
Radioisótopos de Cesio , Polvo , Polvo/análisis , España , África del Norte , Radioisótopos de Cesio/análisis , Aerosoles/análisisRESUMEN
BACKGROUND: After embryonic development, Caenorhabditis elegans progress through for larval stages, each of them finishing with molting. The repetitive nature of C. elegans postembryonic development is considered an oscillatory process, a concept that has gained traction from regulation by a circadian clock gene homologue. Nevertheless, each larval stage has a defined duration and entails specific events. Since the overall duration of development is controlled by numerous factors, we have asked whether different rate-limiting interventions impact all stages equally. RESULTS: We have measured the duration of each stage of development for over 2500 larvae, under varied environmental conditions known to alter overall developmental rate. We applied changes in temperature and in the quantity and quality of nutrition and analysed the effect of genetically reduced insulin signalling. Our results show that the distinct developmental stages respond differently to these perturbations. The changes in the duration of specific larval stages seem to depend on stage-specific events. Furthermore, our high-resolution measurement of the effect of temperature on the stage-specific duration of development has unveiled novel features of temperature dependence in C. elegans postembryonic development. CONCLUSIONS: Altogether, our results show that multiple factors fine tune developmental timing, impacting larval stages independently. Further understanding of the regulation of this process will allow modelling the mechanisms that control developmental timing.