Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Nucleic Acids Res ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721779

RESUMEN

Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.

2.
Nat Commun ; 15(1): 4422, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789440

RESUMEN

The heterogeneous composition of cellular transcriptomes poses a major challenge for detecting weakly expressed RNA classes, as they can be obscured by abundant RNAs. Although biochemical protocols can enrich or deplete specified RNAs, they are time-consuming, expensive and can compromise RNA integrity. Here we introduce RISER, a biochemical-free technology for the real-time enrichment or depletion of RNA classes. RISER performs selective rejection of molecules during direct RNA sequencing by identifying RNA classes directly from nanopore signals with deep learning and communicating with the sequencing hardware in real time. By targeting the dominant messenger and mitochondrial RNA classes for depletion, RISER reduces their respective read counts by more than 85%, resulting in an increase in sequencing depth of 47% on average for long non-coding RNAs. We also apply RISER for the depletion of globin mRNA in whole blood, achieving a decrease in globin reads by more than 90% as well as an increase in non-globin reads by 16% on average. Furthermore, using a GPU or a CPU, RISER is faster than GPU-accelerated basecalling and mapping. RISER's modular and retrainable software and intuitive command-line interface allow easy adaptation to other RNA classes. RISER is available at https://github.com/comprna/riser .


Asunto(s)
ARN Mensajero , Análisis de Secuencia de ARN , Análisis de Secuencia de ARN/métodos , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Largo no Codificante/genética , ARN/genética , Programas Informáticos , Globinas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Aprendizaje Profundo , Transcriptoma , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo
3.
Forensic Sci Int Genet ; 71: 103048, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640705

RESUMEN

DNA methylation plays essential roles in regulating physiological processes, from tissue and organ development to gene expression and aging processes and has emerged as a widely used biomarker for the identification of body fluids and age prediction. Currently, methylation markers are targeted independently at specific CpG sites as part of a multiplexed assay rather than through a unified assay. Methylation detection is also dependent on divergent methodologies, ranging from enzyme digestion and affinity enrichment to bisulfite treatment, alongside various technologies for high-throughput profiling, including microarray and sequencing. In this pilot study, we test the simultaneous identification of age-associated and body fluid-specific methylation markers using a single technology, nanopore adaptive sampling. This innovative approach enables the profiling of multiple CpG marker sites across entire gene regions from a single sample without the need for specialized DNA preparation or additional biochemical treatments. Our study demonstrates that adaptive sampling achieves sufficient coverage in regions of interest to accurately determine the methylation status, shows a robust consistency with whole-genome bisulfite sequencing data, and corroborates known CpG markers of age and body fluids. Our work also resulted in the identification of new sites strongly correlated with age, suggesting new possible age methylation markers. This study lays the groundwork for the systematic development of nanopore-based methodologies in both age prediction and body fluid identification, highlighting the feasibility and potential of nanopore adaptive sampling while acknowledging the need for further validation and expansion in future research.


Asunto(s)
Envejecimiento , Islas de CpG , Metilación de ADN , Humanos , Islas de CpG/genética , Proyectos Piloto , Marcadores Genéticos , Envejecimiento/genética , Adulto , Nanoporos , Persona de Mediana Edad , Anciano , Análisis de Secuencia de ADN , Masculino , Saliva/química , Femenino , Adulto Joven , Secuenciación de Nanoporos , Semen/química
4.
Hemasphere ; 8(2): e45, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38435427

RESUMEN

Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we identify HIFhigh and HIFlow specific AML subgroups (inv(16)/t(8;21) and MLLr, respectively) and provide a comprehensive single-cell expression atlas of 119,000 AML cells and AML-LSCs in paired diagnostic-relapse samples from these molecular subgroups. The HIF/hypoxia pathway signature is attenuated in AML-LSCs compared with more differentiated AML cells but is more expressed than in healthy hematopoietic cells. Importantly, chemical inhibition of HIF cooperates with standard-of-care chemotherapy to impair AML growth and to substantially eliminate AML-LSCs in vitro and in vivo. These findings support the HIF pathway in the stem cell-driven drug resistance of AML and unravel avenues for combinatorial targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.

5.
Breast Cancer Res ; 25(1): 143, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964360

RESUMEN

BACKGROUND: As in most solid cancers, the emergence of cells with oncogenic mutations in the mammary epithelium alters the tissue homeostasis. Some soluble factors, such as TGFß, potently modify the behavior of healthy stromal cells. A subpopulation of cancer-associated fibroblasts expressing a TGFß target, the SNAIL1 transcription factor, display myofibroblastic abilities that rearrange the stromal architecture. Breast tumors with the presence of SNAIL1 in the stromal compartment, and with aligned extracellular fiber, are associated with poor survival prognoses. METHODS: We used deep RNA sequencing and biochemical techniques to study alternative splicing and human tumor databases to test for associations (correlation t-test) between SNAIL1 and fibronectin isoforms. Three-dimensional extracellular matrices generated from fibroblasts were used to study the mechanical properties and actions of the extracellular matrices on tumor cell and fibroblast behaviors. A metastatic mouse model of breast cancer was used to test the action of fibronectin isoforms on lung metastasis. RESULTS: In silico studies showed that SNAIL1 correlates with the expression of the extra domain A (EDA)-containing (EDA+) fibronectin in advanced human breast cancer and other types of epithelial cancers. In TGFß-activated fibroblasts, alternative splicing of fibronectin as well as of 500 other genes was modified by eliminating SNAIL1. Biochemical analyses demonstrated that SNAIL1 favors the inclusion of the EDA exon by modulating the activity of the SRSF1 splicing factor. Similar to Snai1 knockout fibroblasts, EDA- fibronectin fibroblasts produce an extracellular matrix  that does not sustain TGFß-induced fiber organization, rigidity, fibroblast activation, or tumor cell invasion. The presence of EDA+ fibronectin changes the action of metalloproteinases on fibronectin fibers. Critically, in an mouse orthotopic breast cancer model, the absence of the fibronectin EDA domain completely prevents lung metastasis. CONCLUSIONS: Our results support the requirement of EDA+ fibronectin in the generation of a metastasis permissive stromal architecture in breast cancers and its molecular control by SNAIL1. From a pharmacological point of view, specifically blocking EDA+ fibronectin deposition could be included in studies to reduce the formation of a pro-metastatic environment.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Animales , Femenino , Humanos , Ratones , Empalme Alternativo , Neoplasias de la Mama/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
7.
Front Microbiol ; 14: 1233178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645229

RESUMEN

Introduction: Serum hepatitis B virus (HBV) RNA is a promising new biomarker to manage and predict clinical outcomes of chronic hepatitis B (CHB) infection. However, the HBV serum transcriptome within encapsidated particles, which is the biomarker analyte measured in serum, remains poorly characterized. This study aimed to evaluate serum HBV RNA transcript composition and proportionality by PCR-cDNA nanopore sequencing of samples from CHB patients having varied HBV genotype (gt, A to F) and HBeAg status. Methods: Longitudinal specimens from 3 individuals during and following pregnancy (approximately 7 months between time points) were also investigated. HBV RNA extracted from 16 serum samples obtained from 13 patients (73.3% female, 84.6% Asian) was sequenced and serum HBV RNA isoform detection and quantification were performed using three bioinformatic workflows; FLAIR, RATTLE, and a GraphMap-based workflow within the Galaxy application. A spike-in RNA variant (SIRV) control mix was used to assess run quality and coverage. The proportionality of transcript isoforms was based on total HBV reads determined by each workflow. Results: All chosen isoform detection workflows showed high agreement in transcript proportionality and composition for most samples. HBV pregenomic RNA (pgRNA) was the most frequently observed transcript isoform (93.8% of patient samples), while other detected transcripts included pgRNA spliced variants, 3' truncated variants and HBx mRNA, depending on the isoform detection method. Spliced variants of pgRNA were primarily observed in HBV gtB, C, E, or F-infected patients, with the Sp1 spliced variant detected most frequently. Twelve other pgRNA spliced variant transcripts were identified, including 3 previously unidentified transcripts, although spliced isoform identification was very dependent on the workflow used to analyze sequence data. Longitudinal sampling among pregnant and post-partum antiviral-treated individuals showed increasing proportions of 3' truncated pgRNA variants over time. Conclusions: This study demonstrated long-read sequencing as a promising tool for the characterization of the serum HBV transcriptome. However, further studies are needed to better understand how serum HBV RNA isoform type and proportion are linked to CHB disease progression and antiviral treatment response.

8.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37139545

RESUMEN

The expanding field of epitranscriptomics might rival the epigenome in the diversity of biological processes impacted. In recent years, the development of new high-throughput experimental and computational techniques has been a key driving force in discovering the properties of RNA modifications. Machine learning applications, such as for classification, clustering or de novo identification, have been critical in these advances. Nonetheless, various challenges remain before the full potential of machine learning for epitranscriptomics can be leveraged. In this review, we provide a comprehensive survey of machine learning methods to detect RNA modifications using diverse input data sources. We describe strategies to train and test machine learning methods and to encode and interpret features that are relevant for epitranscriptomics. Finally, we identify some of the current challenges and open questions about RNA modification analysis, including the ambiguity in predicting RNA modifications in transcript isoforms or in single nucleotides, or the lack of complete ground truth sets to test RNA modifications. We believe this review will inspire and benefit the rapidly developing field of epitranscriptomics in addressing the current limitations through the effective use of machine learning.


Asunto(s)
Aprendizaje Automático , Transcriptoma , ARN Mensajero , ARN/genética
9.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36692218

RESUMEN

The first characterised FUSE Binding Protein family member, FUBP1, binds single-stranded DNA to activate MYC transcription. Psi, the sole FUBP protein in Drosophila, binds RNA to regulate P-element and mRNA splicing. Our previous work revealed pro-growth functions for Psi, which depend, in part, on transcriptional activation of Myc. Genome-wide functions for FUBP family proteins in transcriptional control remain obscure. Here, through the first genome-wide binding and expression profiles obtained for a FUBP family protein, we demonstrate that, in addition to being required to activate Myc to promote cell growth, Psi also directly binds and activates stg to couple growth and cell division. Thus, Psi knockdown results in reduced cell division in the wing imaginal disc. In addition to activating these pro-proliferative targets, Psi directly represses transcription of the growth inhibitor tolkin (tok, a metallopeptidase implicated in TGFß signalling). We further demonstrate tok overexpression inhibits proliferation, while tok loss of function increases mitosis alone and suppresses impaired cell division caused by Psi knockdown. Thus, Psi orchestrates growth through concurrent transcriptional activation of the pro-proliferative genes Myc and stg, in combination with repression of the growth inhibitor tok.


Asunto(s)
Proteínas de Drosophila , Drosophila , Proteínas de Unión al ARN , Animales , División Celular , Proliferación Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/metabolismo , Activación Transcripcional
10.
Transl Res ; 253: 68-79, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36089245

RESUMEN

Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. Consequently, the identification of novel molecular targets for treatment is urgently needed to improve patients' outcomes. Our group recently reported that some elements of the cellular machinery controlling alternative-splicing might be useful as potential novel therapeutic tools against advanced PCa. However, the presence and functional role of RBM22, a key spliceosome component, in PCa remains unknown. Therefore, RBM22 levels were firstly interrogated in 3 human cohorts and 2 preclinical mouse models (TRAMP/Pbsn-Myc). Results were validated in in silico using 2 additional cohorts. Then, functional effects in response to RBM22 overexpression (proliferation, migration, tumorspheres/colonies formation) were tested in PCa models in vitro (LNCaP, 22Rv1, and PC-3 cell-lines) and in vivo (xenograft). High throughput methods (ie, RNA-seq, nCounter PanCancer Pathways Panel) were performed in RBM22 overexpressing cells and xenograft tumors. We found that RBM22 levels were down-regulated (mRNA and protein) in PCa samples, and were inversely associated with key clinical aggressiveness features. Consistently, a gradual reduction of RBM22 from non-tumor to poorly differentiated PCa samples was observed in transgenic models (TRAMP/Pbsn-Myc). Notably, RBM22 overexpression decreased aggressiveness features in vitro, and in vivo. These actions were associated with the splicing dysregulation of numerous genes and to the downregulation of critical upstream regulators of cell-cycle (i.e., CDK1/CCND1/EPAS1). Altogether, our data demonstrate that RBM22 plays a critical pathophysiological role in PCa and invites to suggest that targeting negative regulators of RBM22 expression/activity could represent a novel therapeutic strategy to tackle this disease.


Asunto(s)
Empalme Alternativo , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Empalme Alternativo/genética , Neoplasias de la Próstata/metabolismo , Empalme del ARN , Empalmosomas , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
11.
NAR Cancer ; 4(4): zcac041, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36518527

RESUMEN

A significant proportion of infant B-cell acute lymphoblastic leukemia (B-ALL) patients remains with a dismal prognosis due to yet undetermined mechanisms. We performed a comprehensive multicohort analysis of gene expression, gene fusions, and RNA splicing alterations to uncover molecular signatures potentially linked to the observed poor outcome. We identified 87 fusions with significant allele frequency across patients and shared functional impacts, suggesting common mechanisms across fusions. We further identified a gene expression signature that predicts high risk independently of the gene fusion background and includes the upregulation of the splicing factor SRRM1. Experiments in B-ALL cell lines provided further evidence for the role of SRRM1 on cell survival, proliferation, and invasion. Supplementary analysis revealed that SRRM1 potentially modulates splicing events associated with poor outcomes through protein-protein interactions with other splicing factors. Our findings reveal a potential convergent mechanism of aberrant RNA processing that sustains a malignant phenotype independently of the underlying gene fusion and that could potentially complement current clinical strategies in infant B-ALL.

12.
Elife ; 112022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36217821

RESUMEN

Williams-Beuren syndrome (WBS) is a rare genetic multisystemic disorder characterized by mild-to-moderate intellectual disability and hypersocial phenotype, while the most life-threatening features are cardiovascular abnormalities. Nowadays, there are no pharmacological treatments to directly ameliorate the main traits of WBS. The endocannabinoid system (ECS), given its relevance for both cognitive and cardiovascular function, could be a potential druggable target in this syndrome. We analyzed the components of the ECS in the complete deletion (CD) mouse model of WBS and assessed the impact of its pharmacological modulation in key phenotypes relevant for WBS. CD mice showed the characteristic hypersociable phenotype with no preference for social novelty and poor short-term object-recognition performance. Brain cannabinoid type-1 receptor (CB1R) in CD male mice showed alterations in density and coupling with no detectable change in main endocannabinoids. Endocannabinoid signaling modulation with subchronic (10 days) JZL184, a selective inhibitor of monoacylglycerol lipase, specifically normalized the social and cognitive phenotype of CD mice. Notably, JZL184 treatment improved cardiovascular function and restored gene expression patterns in cardiac tissue. These results reveal the modulation of the ECS as a promising novel therapeutic approach to improve key phenotypic alterations in WBS.


Williams-Beuren syndrome (WBS) is a rare disorder that causes hyper-social behavior, intellectual disability, memory problems, and life-threatening overgrowth of the heart. Behavioral therapies can help improve the cognitive and social aspects of the syndrome and surgery is sometimes used to treat the effects on the heart, although often with limited success. However, there are currently no medications available to treat WBS. The endocannabinoid system ­ which consists of cannabis-like chemical messengers that bind to specific cannabinoid receptor proteins ­ has been shown to influence cognitive and social behaviors, as well as certain functions of the heart. This has led scientists to suspect that the endocannabinoid system may play a role in WBS, and drugs modifying this network of chemical messengers could help treat the rare condition. To investigate, Navarro-Romero, Galera-López et al. studied mice which had the same genetic deletion found in patients with WBS. Similar to humans, the male mice displayed hyper-social behaviors, had memory deficits and enlarged hearts. Navarro-Romero, Galera-López et al. found that these mutant mice also had differences in the function of the receptor protein cannabinoid type-1 (CB1). The genetically modified mice were then treated with an experimental drug called JZL184 that blocks the breakdown of endocannabinoids which bind to the CB1 receptor. This normalized the number and function of receptors in the brains of the WBS mice, and reduced their social and memory symptoms. The treatment also restored the animals' heart cells to a more normal size, improved the function of their heart tissue, and led to lower blood pressure. Further experiments revealed that the drug caused the mutant mice to activate many genes in their heart muscle cells to the same level as normal, healthy mice. These findings suggest that JZL184 or other drugs targeting the endocannabinoid system may help ease the symptoms associated with WBS. More studies are needed to test the drug's effectiveness in humans with this syndrome. Furthermore, the dramatic effect JZL184 has on the heart suggests that it might also help treat high blood pressure or conditions that cause the overgrowth of heart cells.


Asunto(s)
Cannabinoides , Síndrome de Williams , Animales , Benzodioxoles , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Masculino , Ratones , Monoacilglicerol Lipasas/genética , Fenotipo , Piperidinas , Síndrome de Williams/genética
13.
Genome Biol ; 23(1): 153, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804393

RESUMEN

Nanopore sequencing enables the efficient and unbiased measurement of transcriptomes. Current methods for transcript identification and quantification rely on mapping reads to a reference genome, which precludes the study of species with a partial or missing reference or the identification of disease-specific transcripts not readily identifiable from a reference. We present RATTLE, a tool to perform reference-free reconstruction and quantification of transcripts using only Nanopore reads. Using simulated data and experimental data from isoform spike-ins, human tissues, and cell lines, we show that RATTLE accurately determines transcript sequences and their abundances, and shows good scalability with the number of transcripts.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Isoformas de Proteínas/genética , Transcriptoma
14.
Wiley Interdiscip Rev RNA ; 13(4): e1707, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34979593

RESUMEN

The high-throughput sequencing of cellular RNAs has underscored a broad effect of isoform diversification through alternative splicing on the transcriptome. Moreover, the differential production of transcript isoforms from gene loci has been recognized as a critical mechanism in cell differentiation, organismal development, and disease. Yet, the extent of the impact of alternative splicing on protein production and cellular function remains a matter of debate. Multiple experimental and computational approaches have been developed in recent years to address this question. These studies have unveiled how molecular changes at different steps in the RNA processing pathway can lead to differences in protein production and have functional effects. New and emerging experimental technologies open exciting new opportunities to develop new methods to fully establish the connection between messenger RNA expression and protein production and to further investigate how RNA variation impacts the proteome and cell function. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing Translation > Regulation RNA Evolution and Genomics > Computational Analyses of RNA.


Asunto(s)
Empalme Alternativo , Proteoma , Empalme Alternativo/genética , Isoformas de Proteínas , Proteoma/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo
15.
PLoS Comput Biol ; 17(9): e1009411, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529669

RESUMEN

Immunotherapies provide effective treatments for previously untreatable tumors and identifying tumor-specific epitopes can help elucidate the molecular determinants of therapy response. Here, we describe a pipeline, ISOTOPE (ISOform-guided prediction of epiTOPEs In Cancer), for the comprehensive identification of tumor-specific splicing-derived epitopes. Using RNA sequencing and mass spectrometry for MHC-I associated proteins, ISOTOPE identified neoepitopes from tumor-specific splicing events that are potentially presented by MHC-I complexes. Analysis of multiple samples indicates that splicing alterations may affect the production of self-epitopes and generate more candidate neoepitopes than somatic mutations. Although there was no difference in the number of splicing-derived neoepitopes between responders and non-responders to immune therapy, higher MHC-I binding affinity was associated with a positive response. Our analyses highlight the diversity of the immunogenic impacts of tumor-specific splicing alterations and the importance of studying splicing alterations to fully characterize tumors in the context of immunotherapies. ISOTOPE is available at https://github.com/comprna/ISOTOPE.


Asunto(s)
Epítopos/genética , Epítopos/inmunología , Neoplasias/genética , Neoplasias/inmunología , Empalme Alternativo/genética , Empalme Alternativo/inmunología , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Carcinoma de Células Pequeñas/genética , Carcinoma de Células Pequeñas/inmunología , Línea Celular Tumoral , Biología Computacional , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Masculino , Melanoma/genética , Melanoma/inmunología , Modelos Genéticos , Modelos Inmunológicos , Mutación , Neoplasias/terapia , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Empalme del ARN/genética , Empalme del ARN/inmunología , RNA-Seq
16.
Hum Mutat ; 42(11): 1488-1502, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34420246

RESUMEN

Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.


Asunto(s)
Neoplasias de la Mama/genética , Exones , Genes BRCA1 , Tamización de Portadores Genéticos , Predisposición Genética a la Enfermedad , Empalme del ARN , Femenino , Humanos , Intrones
17.
Nat Commun ; 12(1): 3438, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103501

RESUMEN

DNA methylation plays a fundamental role in the control of gene expression and genome integrity. Although there are multiple tools that enable its detection from Nanopore sequencing, their accuracy remains largely unknown. Here, we present a systematic benchmarking of tools for the detection of CpG methylation from Nanopore sequencing using individual reads, control mixtures of methylated and unmethylated reads, and bisulfite sequencing. We found that tools have a tradeoff between false positives and false negatives and present a high dispersion with respect to the expected methylation frequency values. We described various strategies to improve the accuracy of these tools, including a consensus approach, METEORE ( https://github.com/comprna/METEORE ), based on the combination of the predictions from two or more tools that shows improved accuracy over individual tools. Snakemake pipelines are also provided for reproducibility and to enable the systematic application of our analyses to other datasets.


Asunto(s)
Islas de CpG/genética , Metilación de ADN/genética , Secuenciación de Nanoporos , Benchmarking , Proteína 9 Asociada a CRISPR/metabolismo , Citosina/metabolismo , ADN/metabolismo , Escherichia coli/genética , Genoma Bacteriano , Curva ROC
18.
Sci Rep ; 11(1): 3209, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547380

RESUMEN

Viral co-infections occur in COVID-19 patients, potentially impacting disease progression and severity. However, there is currently no dedicated method to identify viral co-infections in patient RNA-seq data. We developed PACIFIC, a deep-learning algorithm that accurately detects SARS-CoV-2 and other common RNA respiratory viruses from RNA-seq data. Using in silico data, PACIFIC recovers the presence and relative concentrations of viruses with > 99% precision and recall. PACIFIC accurately detects SARS-CoV-2 and other viral infections in 63 independent in vitro cell culture and patient datasets. PACIFIC is an end-to-end tool that enables the systematic monitoring of viral infections in the current global pandemic.


Asunto(s)
COVID-19/diagnóstico , Coinfección/diagnóstico , Aprendizaje Profundo , Infecciones por Virus ARN/diagnóstico , Virus ARN/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Prueba de COVID-19 , Coinfección/virología , Coronaviridae/aislamiento & purificación , Humanos , Metapneumovirus/clasificación , Metapneumovirus/aislamiento & purificación , Redes Neurales de la Computación , Orthomyxoviridae/clasificación , Orthomyxoviridae/aislamiento & purificación , Infecciones por Virus ARN/virología , Virus ARN/clasificación , RNA-Seq , Rhinovirus/clasificación , Rhinovirus/aislamiento & purificación , SARS-CoV-2/clasificación , Sensibilidad y Especificidad
19.
RNA ; 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33323527

RESUMEN

Transition through cell cycle phases requires temporal and spatial regulation of gene expression to ensure accurate chromosome duplication and segregation. This regulation involves dynamic reprogramming of gene expression at multiple transcriptional and posttranscriptional levels. In transcriptionally silent oocytes, the CPEB-family of RNAbinding proteins coordinates temporal and spatial translation regulation of stored maternal mRNAs to drive meiotic progression. CPEB1 mediates mRNA localization to the meiotic spindle, which is required to ensure proper chromosome segregation. Temporal translational regulation also takes place in mitosis, where a large repertoire of transcripts are activated or repressed in specific cell cycle phases. However, whether control of localized translation at the spindle is required for mitosis is unclear, as mitotic and acentriolar-meiotic spindles are functionally and structurally different. Furthermore, the large differences in scale-ratio between cell volume and spindle size in oocytes compared to somatic mitotic cells may generate distinct requirements for gene expression compartmentalization in meiosis and mitosis. Here we show that mitotic spindles contain CPE-localized mRNAs and translating ribosomes. Moreover, CPEB1 and CPEB4 localize in the spindles and they may function sequentially in promoting mitotic stage transitions and correct chromosome segregation. Thus, CPEB1 and CPEB4 bind to specific spindle-associated transcripts controlling the expression and/or localization of their encoded factors that, respectively, drive metaphase and anaphase/cytokinesis.

20.
Nat Commun ; 11(1): 1768, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286305

RESUMEN

The differential production of transcript isoforms from gene loci is a key cellular mechanism. Yet, its impact in protein production remains an open question. Here, we describe ORQAS (ORF quantification pipeline for alternative splicing), a pipeline for the translation quantification of individual transcript isoforms using ribosome-protected mRNA fragments (ribosome profiling). We find evidence of translation for 40-50% of the expressed isoforms in human and mouse, with 53% of the expressed genes having more than one translated isoform in human, and 33% in mouse. Differential splicing analysis revealed that about 40% of the splicing changes at RNA level are concordant with changes in translation. Furthermore, orthologous cassette exons between human and mouse preserve the directionality of the change, and are enriched in microexons in a comparison between glia and glioma. ORQAS leverages ribosome profiling to uncover a widespread and evolutionarily conserved impact of differential splicing on translation, particularly of microexon-containing isoforms.


Asunto(s)
Proteoma/metabolismo , Empalme del ARN/fisiología , Empalme Alternativo/genética , Animales , Biología Computacional/métodos , Humanos , Ratones , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/genética , Empalme del ARN/genética , Ribosomas/genética , Ribosomas/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA