Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Environ Health Sci Eng ; 20(2): 849-860, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36406591

RESUMEN

Water is an essential compound on earth and necessary for life. The presence of highly toxic contaminants such as arsenic and others, in many cases, represents one of the biggest problems facing the earth´s population. Treatment of contaminated water with magnetite (Fe3O4) nanoparticles (NPs) can play a crucial role in arsenic removal. In this report, we demonstrate arsenic removal from an aqueous solution and natural water taken from the Peruvian river (Tambo River in Arequipa, Peru) using magnetite NPs synthesized by the coprecipitation method. XRD data analysis of Fe3O4 NPs revealed the formation of the cubic-spinel phase of magnetite with an average crystallite size of ~ 13 nm, which is found in good agreement with the physical size assessed from TEM image analysis. Magnetic results evidence that our NPs show a superparamagnetic-like behavior with a thermal relaxation of magnetic moments mediated by strong particle-particle interactions. FTIR absorption band shows the interactions between arsenate anions and Fe-O and Fe-OH groups through a complex mechanism. The experimental results showed that arsenic adsorption is fast during the first 10 min; while the equilibrium is reached within 60 min, providing an arsenic removal efficiency of ~ 97%. Adsorption kinetics is well modeled using the pseudo-second-order kinetic equation, suggesting that the adsorption process is related to the chemisorption model. According to Langmuir's model, the maximum arsenic adsorption capacity of 81.04 mg·g- 1 at pH = 2.5 was estimated, which describes the adsorption process as being monolayer, However, our results suggest that multilayer adsorption can be produced after monolayer saturation in agreement with the Freundlich model. This finding was corroborated by the Sips model, which showed a good correlation to the experimental data. Tests using natural water taken from Tambo River indicate a significant reduction of arsenic concentration from 356 µg L- 1 to 7.38 µg L- 1, the latter is below the limit imposed by World Health Organization (10 µg L- 1), suggesting that magnetite NPs show great potential for the arsenic removal.

2.
Nanotechnology ; 33(33)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35508085

RESUMEN

P-type and n-type metal oxide semiconductors are widely used in the manufacture of gas sensing materials, due to their excellent electronic, electrical and electrocatalytic properties. Hematite (α-Fe2O3) compound has been reported as a promising material for sensing broad types of gases, due to its affordability, good stability and semiconducting properties. In the present work, the efficient and easy-to-implement sol-gel method has been used to synthesizeα-Fe2O3nanoparticles (NPs). The TGA-DSC characterizations of the precursor gel provided information about the phase transformation temperature and the mass percentage of the hematite NPs. X-ray diffraction, transmission electron microscopy and x-ray photoelectron spectroscopy data analyses indicated the formation of two iron oxide phases (hematite and magnetite) when the NPs are subjected to thermal treatment at 400 °C. Meanwhile, only the hematite phase was determined for thermal annealing above 500 °C up to 800 °C. Besides, the crystallite size shows an increasing trend with the thermal annealing and no defined morphology. A clear reduction of surface defects, associated with oxygen vacancies was also evidenced when the annealing temperature was increased, resulting in changes on the electrical properties of hematite NPs. Resistive gas-sensing tests were carried out using hematite NPs + glycerin paste, to detect quaternary ammonium compounds. Room-temperature high sensitivity values (Sr âˆ¼ 4) have been obtained during the detection of ∼1 mM quaternary ammonium compounds vapor. The dependence of the sensitivity on the particle size, the mass ratio of NPs with respect to the organic ligand, changes in the dielectric properties, and the electrical conduction mechanism of gas sensing was discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA