Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; : e0105124, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39329487

RESUMEN

Ergot alkaloid synthesis (eas) gene clusters found in several fungi encode biosynthesis of agriculturally and pharmaceutically important ergot alkaloids. Although the biosynthetic genes of the ergot alkaloid pathway have been well characterized, regulation of those genes is unknown. We characterized a gene with sequence similarity to a putative transcription factor and that was found adjacent to the eas cluster of Metarhizium brunneum, a plant symbiont and insect pathogen. Function of the novel gene, easR, was explored by CRISPR-Cas9-derived gene knockouts. To maximize potential for ergot alkaloid accumulation, strains of M. brunneum were injected into larvae of the insect Galleria mellonella. Larvae infected with the wild type contained abundant ergot alkaloids, but those infected with easR knockouts lacked detectable ergot alkaloids. The easR knockout strains had significantly reduced or no detectable mRNA from eas cluster genes in RNAseq and qualitative RT-PCR analyses, whereas the wild-type strain contained abundant mRNA from all eas genes. These data demonstrate that the product of easR is required for ergot alkaloid accumulation and provide evidence that it has a role in the expression of ergot alkaloid biosynthesis genes. Larvae infected with an easR knockout survived significantly longer than those infected with the wild type (P < 0.0001), indicating a role for EasR, and indirectly confirming a role for ergot alkaloids, in the virulence of M. brunneum to insects. Homologs of easR were found associated with eas clusters of at least 15 other ergot alkaloid-producing fungi, indicating that EasR homologs may contribute to regulation of ergot alkaloid synthesis in additional fungi. IMPORTANCE: Ergot alkaloids produced by several species of fungi are important as contaminants of food and feed in agriculture and also as the foundation of numerous pharmaceuticals prescribed for dementia, migraines, hyperprolactinemia, and several other disorders. Information on control of the ergot alkaloid pathway may contribute to strategies to limit their production in agricultural settings or increase their yield for pharmaceutical production. Our results demonstrate that a previously uncharacterized gene clustered with the ergot alkaloid synthesis genes is required for the sufficient transcription of the ergot alkaloid biosynthesis genes. This observation suggests the gene encodes a factor regulating transcription of those biosynthetic genes.

2.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30076193

RESUMEN

Ergot alkaloids are specialized fungal metabolites with potent biological activities. They are encoded by well-characterized gene clusters in the genomes of producing fungi. Penicillium camemberti plays a major role in the ripening of Brie and Camembert cheeses. The P. camemberti genome contains a cluster of five genes shown in other fungi to be required for synthesis of the important ergot alkaloid intermediate chanoclavine-I aldehyde and two additional genes (easH and easQ) that may control modification of chanoclavine-I aldehyde into other ergot alkaloids. We analyzed samples of Brie and Camembert cheeses, as well as cultures of P. camemberti, and did not detect chanoclavine-I aldehyde or its derivatives. To create a functioning facsimile of the P. camembertieas cluster, we expressed P. camemberti easH and easQ in a chanoclavine-I aldehyde-accumulating easA knockout mutant of Neosartorya fumigata The easH-easQ-engineered N. fumigata strain accumulated a pair of compounds of m/z 269.1288 in positive-mode liquid chromatography-mass spectrometry (LC-MS). The analytes fragmented in a manner typical of the stereoisomeric ergot alkaloids rugulovasine A and B, and the related rugulovasine producer Penicillium biforme accumulated the same isomeric pair of analytes. The P. camemberti eas genes were transcribed in culture, but comparison of the P. camemberti eas cluster with the functional cluster from P. biforme indicated 11 polymorphisms. Whereas other P. camembertieas genes functioned when expressed in N. fumigata, P. camembertieasC did not restore ergot alkaloids when expressed in an easC mutant. The data indicate that P. camemberti formerly had the capacity to produce the ergot alkaloids rugulovasine A and B.IMPORTANCE The presence of ergot alkaloid synthesis genes in the genome of Penicillium camemberti is significant, because the fungus is widely consumed in Brie and Camembert cheeses. Our results show that, although the fungus has several functional genes from the ergot alkaloid pathway, it produces only an early pathway intermediate in culture and does not produce ergot alkaloids in cheese. Penicillium biforme, a close relative of P. camemberti, contains a similar but fully functional set of ergot alkaloid synthesis genes and produces ergot alkaloids chanoclavine-I, chanoclavine-I aldehyde, and rugulovasine A and B. Our reconstruction of the P. camemberti pathway in the model fungus Neosartorya fumigata indicated that P. camemberti formerly had the capacity to produce these same ergot alkaloids. Neither P. camemberti nor P. biforme produced ergot alkaloids in cheese, indicating that nutritionally driven gene regulation prevents these fungi from producing ergot alkaloids in a dairy environment.


Asunto(s)
Alcaloides de Claviceps/biosíntesis , Penicillium/metabolismo , Cromatografía Líquida de Alta Presión , Ergolinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Espectrometría de Masas , Penicillium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA