Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Mass Spectrom Rev ; 43(4): 723-724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38454805
2.
J Am Soc Mass Spectrom ; 35(3): 561-574, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38350102

RESUMEN

Established bottom-up approaches for the characterization of nucleic acids (NAs) rely on the strand-cleavage activity of nucleotide-specific endonucleases to generate smaller oligonucleotides amenable to gas-phase sequencing. The complexity of these hydrolytic mixtures calls for the utilization of a front-end separation to facilitate full mass spectrometric (MS) characterization. This report explored the merits of microfluidic capillary zone electrophoresis (CZE) as a possible alternative to common liquid chromatography techniques. An oligonucleotide ladder was initially employed to investigate the roles of fundamental analyte features and experimental parameters in determining the outcome of CZE-MS analyses. The results demonstrated the ability to fully resolve the various rungs into discrete electrophoretic peaks with full-width half-height (FWHH) resolution that was visibly affected by the overall amount of material injected into the system. Analogous results were obtained from a digestion mixture prepared by treating yeast tRNAPhe (75 nt) with RNase T1, which provided several well-resolved peaks in spite of the increasing sample heterogeneity. The regular shapes of such peaks, however, belied the fact that most of them contained sets of comigrating species, as shown by the corresponding MS spectra. Even though it was not possible to segregate each species into an individual electrophoretic peak, the analysis still proved capable of unambiguously identifying a total of 29 hydrolytic products, which were sufficient to cover 96% of the tRNAPhe's sequence. Their masses accurately reflected the presence of modified nucleotides characteristic of this type of substrate. The analysis of a digestion mixture obtained from the 364 nt HIV-1 5'-UTR proved to be more challenging. The electropherogram displayed fewer well-resolved peaks and significantly greater incidence of product comigration. In this case, fractionating the highly heterogeneous mixture into discrete bands helped reduce signal suppression and detection bias. As a result, the corresponding MS data enabled the assignment of 248 products out of the possible 513 predicted from the 5'-UTR sequence, which afforded 100% sequence coverage. This figure represented a significant improvement over the 36 total products identified earlier under suboptimal conditions, which afforded only 57% coverage, or the 83 observed by direct infusion nanospray-MS (72%). These results provided a measure of the excellent potential of the technique to support the bottom-up characterization of progressively larger NA samples, such as putative NA therapeutics and mRNA vaccines.


Asunto(s)
Microfluídica , ARN de Transferencia de Fenilalanina , Espectrometría de Masas , Cromatografía Liquida , Electroforesis Capilar/métodos
3.
Mass Spectrom Rev ; 43(1): 5-38, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36052666

RESUMEN

The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN , Humanos , ARN/genética , Análisis de Secuencia de ARN/métodos
4.
J Am Soc Mass Spectrom ; 34(10): 2296-2307, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37729585

RESUMEN

In the context of direct top-down analysis or concerted bottom-up characterization of nucleic acid samples, the waning yield of terminal fragments as a function of precursor ion size poses a significant challenge to the gas-phase sequencing of progressively larger oligonucleotides. In this report, we examined the behavior of oligoribonucleotide samples ranging from 20 to 364 nt upon collision-induced dissociation (CID). The experimental data showed a progressive shift from terminal to internal fragments as a function of size. The systematic evaluation of experimental factors, such as collision energy, precursor charge, sample temperature, and the presence of chaotropic agents, showed that this trend could be modestly alleviated but not suppressed. This inexorable effect, which has been reported also for other activation techniques, prompted a re-examination of the features that have traditionally discouraged the utilization of internal fragments as a source of sequence information in data interpretation procedures. Our simulations highlighted the ability of internal fragments to produce self-consistent ladders with either end corresponding to each nucleotide in the sequence, which enables both proper alignment and correct recognition of intervening nucleotides. In turn, contiguous ladders display extensive overlaps with one another and with the ladders formed by terminal fragments, which unambiguously constrain their mutual placement within the analyte sequence. The experimental data borne out the predictions by showing ladders with extensive overlaps, which translated into uninterrupted "walks" covering the entire sequence with no gaps from end to end. More significantly, the results showed that combining the information afforded by internal and terminal ladders resulted in much a greater sequence coverage and nucleotide coverage depth than those achievable when either type of information was considered separately. The examination of a series of 58-mer oligonucleotides with high sequence homology showed that the assignment ambiguities engendered by internal fragments did not significantly exceed those afforded by the terminal ones. Therefore, the balance between potential benefits and perils of including the former makes a compelling argument for the development of integrated data interpretation strategies, which are better equipped for dealing with the changing fragmentation patterns obtained from progressively larger oligonucleotides.

5.
Nat Med ; 28(1): 117-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949835

RESUMEN

Expansions of a G4C2 repeat in the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating adult-onset neurodegenerative disorders. Using C9-ALS/FTD patient-derived cells and C9ORF72 BAC transgenic mice, we generated and optimized antisense oligonucleotides (ASOs) that selectively blunt expression of G4C2 repeat-containing transcripts and effectively suppress tissue levels of poly(GP) dipeptides. ASOs with reduced phosphorothioate content showed improved tolerability without sacrificing efficacy. In a single patient harboring mutant C9ORF72 with the G4C2 repeat expansion, repeated dosing by intrathecal delivery of the optimal ASO was well tolerated, leading to significant reductions in levels of cerebrospinal fluid poly(GP). This report provides insight into the effect of nucleic acid chemistry on toxicity and, to our knowledge, for the first time demonstrates the feasibility of clinical suppression of the C9ORF72 gene. Additional clinical trials will be required to demonstrate safety and efficacy of this therapy in patients with C9ORF72 gene mutations.


Asunto(s)
Proteína C9orf72/genética , Mutación , Oligonucleótidos Antisentido/genética , Animales , Proteína C9orf72/metabolismo , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo
6.
Anal Chem ; 93(22): 7860-7869, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34043326

RESUMEN

We propose a novel approach for building a classification/identification framework based on the full complement of RNA post-transcriptional modifications (rPTMs) expressed by an organism at basal conditions. The approach relies on advanced mass spectrometry techniques to characterize the products of exonuclease digestion of total RNA extracts. Sample profiles comprising identities and relative abundances of all detected rPTM were used to train and test the capabilities of different machine learning (ML) algorithms. Each algorithm proved capable of identifying rigorous decision rules for differentiating closely related classes and correctly assigning unlabeled samples. The ML classifiers resolved different members of the Enterobacteriaceae family, alternative Escherichia coli serotypes, a series of Saccharomyces cerevisiae knockout mutants, and primary cells of the Homo sapiens central nervous system, which shared very similar genetic backgrounds. The excellent levels of accuracy and resolving power achieved by training on a limited number of classes were successfully replicated when the number of classes was significantly increased to escalate complexity. A dendrogram generated from ML-curated data exhibited a hierarchical organization that closely resembled those afforded by established taxonomic systems. Finer clustering patterns revealed the extensive effects induced by the deletion of a single pivotal gene. This information provided a putative roadmap for exploring the roles of rPTMs in their respective regulatory networks, which will be essential to decipher the epitranscriptomics code. The ubiquitous presence of RNA in virtually all living organisms promises to enable the broadest possible range of applications, with significant implications in the diagnosis of RNA-related diseases.


Asunto(s)
Algoritmos , ARN , Análisis por Conglomerados , Humanos , Saccharomyces cerevisiae/genética
7.
Structure ; 29(4): 345-356.e8, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33333006

RESUMEN

TEAD transcription factors regulate gene expression through interactions with DNA and other proteins. They are crucial for the development of eukaryotic organisms and to control the expression of genes involved mostly in cell proliferation and differentiation; however, their deregulation can lead to tumorigenesis. To study the interactions of TEAD1 with M-CAT motifs and their inverted versions, the KD of each complex was determined, and H/D exchange, quantitative chemical cross-linking, molecular docking, and smFRET were utilized for structural characterization. ChIP-qPCR was employed to correlate the results with a cell line model. The results obtained showed that although the inverted motif has 10× higher KD, the same residues were affected by the presence of M-CAT in both orientations. Molecular docking and smFRET revealed that TEAD1 binds the inverted motif rotated 180°. In addition, the inverted motif was proven to be occupied by TEAD1 in Jurkat cells, suggesting that the low-affinity binding sites present in the human genome may possess biological relevance.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Proteínas Nucleares/química , Factores de Transcripción/química , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Células Jurkat , Simulación del Acoplamiento Molecular , Proteínas Nucleares/metabolismo , Motivos de Nucleótidos , Unión Proteica , Factores de Transcripción de Dominio TEA , Factores de Transcripción/metabolismo
8.
Rev. Saúde Pública Paraná (Online) ; 3(2): 147-157, abr. 2020.
Artículo en Portugués | LILACS, CONASS, ColecionaSUS, SESA-PR | ID: biblio-1252955

RESUMEN

A pandemia de COVID-19 constitui grave e generalizada crise, a qual tem pressionado os sistemas de saúde e desafiado a gestão pública para rápida e oportuna resposta. Trata-se de um relato de experiência da avaliação dos planos de contingência municipais do Estado do Paraná para o enfrentamento da COVID-19, a partir de requisitos mínimos quanto à organização de resposta. Foram avaliados 356 planos municipais, dos quais 60% não alcançaram os requisitos mínimos, 32% atenderam parcialmente e 8% atenderam satisfatoriamente. A análise permitiu verificar limitações na capacidade de organização no território, ações de enfrentamento, definição de prioridades e recursos para a operacionalização das ações planejadas diante de uma emergência em saúde pública. Sob a ótica dos planos de contingência, é necessário fortalecer a governança municipal e qualificar a educação permanente para liderança, organização e coordenação de ações em saúde no enfrentamento da pandemia. (AU)


The COVID-19 pandemic is a serious and widespread health crisis which has put pressure on health care systems and challenged public management for a quick and timely response. The following report is an experience evaluation of the municipal contingency plans of the State of Paraná to deal with COVID-19, from minimum requirements for response organization. Three hundred and fifty six municipal plans were evaluated, 60% did not meet the minimum requirements, 32% partially met and 8% satisfactorily met the requirements. The analysis allowed to verify limitations in the organizational capacity in the territory, coping actions, priorities definition and resources for the planned actions implementation in the face of a public health emergency. From the contingency plans perspective, it is necessary to strengthen municipal governance and qualify permanent education for leadership, organization and coordination of health actions to face the pandemic. (AU)


Asunto(s)
Planes de Contingencia , Atención a la Salud , Pandemias , COVID-19
10.
PLoS One ; 15(2): e0229103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32053677

RESUMEN

Chemical modifications that regulate protein expression at the translational level are emerging as vital components of the cellular stress response. Transfer RNAs (tRNAs) are significant targets for methyl-based modifications, which are catalyzed by tRNA methyltransferases (Trms). Here, Saccharomyces cerevisiae served as a model eukaryote system to investigate the role of 2'-O-ribose tRNA methylation in the cell's response to oxidative stress. Using 2'-O-ribose deletion mutants for trms 3, 7, 13, and 44, in acute and chronic exposure settings, we demonstrate a broad cell sensitivity to oxidative stress-inducing toxicants (i.e., hydrogen peroxide, rotenone, and acetic acid). A global analysis of hydrogen peroxide-induced tRNA modifications shows a complex profile of decreased, or undetectable, 2'-O-ribose modification events in 2'-O-ribose trm mutant strains, providing a critical link between this type of modification event and Trm status post-exposure. Based on the pronounced oxidative stress sensitivity observed for trm7 mutants, we used a bioinformatic tool to identify transcripts as candidates for regulation by Trm7-catalyzed modifications (i.e., enriched in UUC codons decoded by tRNAPheGmAA). This screen identified transcripts linked to diverse biological processes that promote cellular recovery after oxidative stress exposure, including DNA repair, chromatin remodeling, and nutrient acquisition (i.e., CRT10, HIR3, HXT2, and GNP1); moreover, these mutants were also oxidative stress-sensitive. Together, these results solidify a role for TRM3, 7, 13, and 44, in the cellular response to oxidative stress, and implicate 2'-O-ribose tRNA modification as an epitranscriptomic strategy for oxidative stress recovery.


Asunto(s)
ARN de Transferencia/metabolismo , Ribosa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Reparación del ADN/genética , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
11.
J Mass Spectrom ; 55(2): e4465, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31697854

RESUMEN

In this report, we explored the benefits of cyclic ion mobility (cIM) mass spectrometry in the analysis of isomeric post-transcriptional modifications of RNA. Standard methyl-cytidine samples were initially utilized to test the ability to correctly distinguish different structures sharing the same elemental composition and thus molecular mass. Analyzed individually, the analytes displayed characteristic arrival times (tD ) determined by the different positions of the modifying methyl groups onto the common cytidine scaffold. Analyzed in mixture, the widths of the respective signals resulted in significant overlap that initially prevented their resolution on the tD scale. The separation of the four isomers was achieved by increasing the number of passes through the cIM device, which enabled to fully differentiate the characteristic ion mobility behaviors associated with very subtle structural variations. The placement of the cIM device between the mass-selective quadrupole and the time-of-flight analyzer allowed us to perform gas-phase activation of each of these ion populations, which had been first isolated according to a common mass-to-charge ratio and then separated on the basis of different ion mobility behaviors. The observed fragmentation patterns confirmed the structures of the various isomers thus substantiating the benefits of complementing unique tD information with specific fragmentation data to reach more stringent analyte identification. These capabilities were further tested by analyzing natural mono-nucleotide mixtures obtained by exonuclease digestion of total RNA extracts. In particular, the combination of cIM separation and post-mobility dissociation allowed us to establish the composition of methyl-cytidine and methyl-adenine components present in the entire transcriptome of HeLa cells. For this reason, we expect that this technique will benefit not only epitranscriptomic studies requiring the determination of identity and expression levels of RNA modifications, but also metabolomics investigations involving the analysis of natural extracts that may possibly contain subsets of isomeric/isobaric species.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Ribonucleótidos/análisis , Células HeLa , Humanos , Isomerismo , Ribonucleótidos/química
12.
Biomolecules ; 9(10)2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561554

RESUMEN

The limited information available on the structure of complexes involving transcription factors and cognate DNA response elements represents a major obstacle in the quest to understand their mechanism of action at the molecular level. We implemented a concerted structural proteomics approach, which combined hydrogen-deuterium exchange (HDX), quantitative protein-protein and protein-nucleic acid cross-linking (XL), and homology analysis, to model the structure of the complex between the full-length DNA binding domain (DBD) of Forkhead box protein O4 (FOXO4) and its DNA binding element (DBE). The results confirmed that FOXO4-DBD assumes the characteristic forkhead topology shared by these types of transcription factors, but its binding mode differs significantly from those of other members of the family. The results showed that the binding interaction stabilized regions that were rather flexible and disordered in the unbound form. Surprisingly, the conformational effects were not limited only to the interface between bound components, but extended also to distal regions that may be essential to recruiting additional factors to the transcription machinery. In addition to providing valuable new insights into the binding mechanism, this project provided an excellent evaluation of the merits of structural proteomics approaches in the investigation of systems that are not directly amenable to traditional high-resolution techniques.


Asunto(s)
ADN/química , Factores de Transcripción/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Medición de Intercambio de Deuterio , Espectrometría de Masas , Estructura Molecular , Elementos de Respuesta , Factores de Transcripción/metabolismo
13.
J Phys Chem B ; 123(20): 4347-4357, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31042389

RESUMEN

A new, multithreaded, trajectory method based software platform, CoSIMS, is revealed and compared to reference MOBCAL collision cross sections (CCS). CoSIMS employs various molecular mechanics algorithms to lessen the computational resources required to simulate thousands of buffer gas-ion collisions, including the neglect of London dispersion interactions at long distances and the removal of trajectories that insignificantly contribute to the total CCS via an ellipsoidal projection approximation. The showcased program is used to calculate the collision cross sections of carbon fullerenes, proteins, and DNA strands of various lengths, sizes, and molecular weights, and these are compared against the CCSs calculated by MOBCAL. Through this analysis, it is shown that the application of the aforementioned algorithms enables both faster and more reasonable CCS calculations than MOBCAL for highly elongated molecules such as nucleic acids; for all other molecules, CoSIMS is able to reproduce the CCSs generated by MOBCAL's trajectory method within a few percent. Overall, CoSIMS is able to calculate nearly identical CCSs as MOBCAL in nearly 2 orders of magnitude less CPU time due to the various numerical methods implemented into the software, even when run on a single CPU core.

14.
ACS Med Chem Lett ; 10(4): 552-557, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30996795

RESUMEN

The pressing demand for sustainable antitumor drugs prompted us to investigate 3-chloropiperidines as potential mustard-based anticancer agents. In this study, an explorative set of variously decorated monofunctional 3-chloropiperidines (M-CePs) was efficiently synthesized through a fast and affordable route providing high yields of pure racemates and enantiomers. Consistently with their reactivity, M-CePs were demonstrated to alkylate DNA in vitro. On a panel of carcinoma cell lines, M-CePs exhibited low nanomolar cytotoxicity indexes, which showed their remarkable activity against pancreatic cancer cells and in all cases performed strikingly better than the chlorambucil control. Very interestingly, stereochemistry modulated the activity of M-CePs in unexpected ways, pointing to additional molecular mechanisms of action beyond the direct damage of genomic DNA. This encouraging combination of efficacy and sustainability suggests they are valid candidates for anticancer agent development.

15.
J Biomol Struct Dyn ; 37(3): 551-561, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29447072

RESUMEN

The facile construction of metal-DNA complexes using 'Click' reactions is reported here. A series of 2'-propargyl-modified DNA oligonucleotides were initially synthesized as structure scaffolds and were then modified through 'Click' reaction to incorporate a bipyridine ligand equipped with an azido group. These metal chelating ligands can be placed in the DNA context in site-specific fashion to provide versatile templates for binding various metal ions, which are exchangeable using a simple EDTA washing-and-filtration step. The constructed metal-DNA complexes were found to be thermally stable. Their structures were explored by solving a crystal structure of a propargyl-modified DNA duplex and installing the bipyridine ligands by molecular modeling and simulation. These metal-DNA complexes could have wide applications as novel organometallic catalysts, artificial ribonucleases, and potential metal delivery systems.


Asunto(s)
2,2'-Dipiridil/química , ADN/química , Metales/química , Química Clic , Cristalografía por Rayos X , Iones , Ligandos , Simulación de Dinámica Molecular , Peso Molecular , Desnaturalización de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Oligonucleótidos/química , Temperatura
16.
Anal Chem ; 90(22): 13541-13548, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30351906

RESUMEN

The electrospray-MS analysis of oligonucleotides is hampered by nonvolatile metal cations, which may produce adducts responsible for signal suppression and loss of resolution. Alternative to replacing metal cations with MS-friendly ammonium, we explored the utilization of nanospray emitters with submicrometer-diameter tips, which was shown to benefit the analysis of protein samples containing elevated salt concentrations. We demonstrated that such benefits are not limited to proteins, but extend also to oligonucleotide samples analyzed in the negative ion mode. At elevated Na+/Mg2+ concentrations, submicrometer tips produced significantly greater signal-to-noise ratios, as well as greatly reduced adducts and salt clusters, than observed when utilizing micrometer tips. These effects were marginally affected by emitter composition (i.e., borosilicate versus quartz), but varied according to salt concentration and number of oligonucleotide phosphates. The results confirmed that adduct formation is driven by the concentrating effects of the desolvation process, which leads to greatly increased solute concentrations as the volume of the droplet decreases. The process promotes cation-phosphate interactions that may not have necessarily existed in the initial sample, but nevertheless shape the observed adduct series. Therefore, such series may not accurately reflect the distribution of counterions surrounding the analyte in solution. No adverse effects were noted on specific metal interactions, such as those present in a model drug-DNA assembly. These observations indicate that the utilization of submicrometer tips represents an excellent alternative to traditional ammonium-replacement approaches, which enables the analysis of oligonucleotides in the presence of Na+/Mg2+ concentrations capable of preserving their structure and functional properties.


Asunto(s)
Nanotecnología , Oligonucleótidos/química , Aniones , Cationes , Espectrometría de Masa por Ionización de Electrospray
17.
Methods ; 144: 64-78, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29753003

RESUMEN

With the goal of expanding the very limited toolkit of cross-linking agents available for nucleic acids and their protein complexes, we evaluated the merits of a wide range of bifunctional agents that may be capable of reacting with the functional groups characteristic of these types of biopolymers. The survey specifically focused on the ability of test reagents to produce desirable inter-molecular conjugates, which could reveal the identity of interacting components and the position of mutual contacts, while also considering a series of practical criteria for their utilization as viable nucleic acid probes. The survey employed models consisting of DNA, RNA, and corresponding protein complexes to mimic as close as possible typical applications. Denaturing polyacrylamide gel electrophoresis (PAGE) and mass spectrometric (MS) analyses were implemented in concert to monitor the formation of the desired conjugates. In particular, the former was used as a rapid and inexpensive tool for the efficient evaluation of cross-linker activity under a broad range of experimental conditions. The latter was applied after preliminary rounds of reaction optimization to enable full-fledged product characterization and, more significantly, differentiation between mono-functional and intra- versus inter-molecular conjugates. This information provided the feedback necessary to further optimize reaction conditions and explain possible outcomes. Among the reagents tested in the study, platinum complexes and nitrogen mustards manifested the most favorable characteristics for practical cross-linking applications, whereas other compounds provided inferior yields, or produced rather unstable conjugates that did not survive the selected analytical conditions. The observed outcomes will help guide the selection of the most appropriate cross-linking reagent for a specific task, whereas the experimental conditions described here will provide an excellent starting point for approaching these types of applications. As a whole, the results of the survey clearly emphasize that finding a universal reagent, which may afford excellent performance with all types of nucleic acid substrates, will require extending the exploration beyond the traditional chemistries employed to modify the constitutive functional groups of these vital biopolymers.


Asunto(s)
Reactivos de Enlaces Cruzados , Espectrometría de Masas/métodos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Electroforesis en Gel de Poliacrilamida/métodos , Modelos Moleculares , Unión Proteica
18.
Nucleic Acids Res ; 46(11): 5776-5791, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29373715

RESUMEN

More than 140 post-transcriptional modifications (PTMs) are known to decorate cellular RNAs, but their incidence, identity and significance in viral RNA are still largely unknown. We have developed an agnostic analytical approach to comprehensively survey PTMs on viral and cellular RNAs. Specifically, we used mass spectrometry to analyze PTMs on total RNA isolated from cells infected with Zika virus, Dengue virus, hepatitis C virus (HCV), poliovirus and human immunodeficiency virus type 1. All five RNA viruses significantly altered global PTM landscapes. Examination of PTM profiles of individual viral genomes isolated by affinity capture revealed a plethora of PTMs on viral RNAs, which far exceeds the handful of well-characterized modifications. Direct comparison of viral epitranscriptomes identified common and virus-specific PTMs. In particular, specific dimethylcytosine modifications were only present in total RNA from virus-infected cells, and in intracellular HCV RNA, and viral RNA from Zika and HCV virions. Moreover, dimethylcytosine abundance during viral infection was modulated by the cellular DEAD-box RNA helicase DDX6. By opening the Pandora's box on viral PTMs, this report presents numerous questions and hypotheses on PTM function and strongly supports PTMs as a new tier of regulation by which RNA viruses subvert the host and evade cellular surveillance systems.


Asunto(s)
Procesamiento Postranscripcional del ARN , Virus ARN/genética , ARN Viral/metabolismo , Línea Celular Tumoral , Citosina/metabolismo , ARN Helicasas DEAD-box/fisiología , Humanos , Proteínas Proto-Oncogénicas/fisiología , Virus ARN/metabolismo , ARN Viral/química , Estrés Fisiológico/genética
19.
Chem Commun (Camb) ; 53(1): 91-94, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27858001

RESUMEN

The HIV nucleocapsid NCp7-SL2 RNA interaction is interrupted in the presence of a formally substitution-inert gold(dien)-nucleobase/N-heterocycle AuN4 compound where the N-heterocycle serves the dual purposes of a template for "non-covalent" molecular recognition of the essential tryptophan of the protein, mimicking the natural reaction and subsequent "fixation" by Au-Cys bond formation providing a chemotype for a new distinct class of nucleocapsid-nucleic acid antagonist.


Asunto(s)
Compuestos Orgánicos de Oro/química , Compuestos Orgánicos de Oro/farmacología , ARN Viral/antagonistas & inhibidores , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad
20.
Phys Chem Chem Phys ; 18(38): 26691-26702, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27711445

RESUMEN

In the present work, the conformational dynamics and folding pathways of i-motif DNA were studied in solution and in the gas-phase as a function of the solution pH conditions using circular dichroism (CD), photoacoustic calorimetry analysis (PAC), trapped ion mobility spectrometry-mass spectrometry (TIMS-MS), and molecular dynamics (MD). Solution studies showed at thermodynamic equilibrium the existence of a two-state folding mechanism, whereas during the pH = 7.0 → 4.5 transition a fast and slow phase (ΔHfast + ΔHslow = 43 ± 7 kcal mol-1) with a volume change associated with the formation of hemiprotonated cytosine base pairs and concomitant collapse of the i-motif oligonucleotide into a compact conformation were observed. TIMS-MS experiments showed that gas-phase, kinetically trapped i-motif DNA intermediates produced by nanoESI are preserved, with relative abundances depending on the solution pH conditions. In particular, a folded i-motif DNA structure was observed in nanoESI-TIMS-MS for low charge states in both positive and negative ion mode (e.g., z = ±3 to ±5) at low pH conditions. As solution pH increases, the cytosine neutralization leads to the loss of cytosine-cytosine+ (C·CH+) base pairing in the CCC strands and in those conditions we observe partially unfolded i-motif DNA conformations in nanoESI-TIMS-MS for higher charge states (e.g., z = -6 to -9). Collisional induced activation prior to TIMS-MS showed the existence of multiple local free energy minima, associated with the i-motif DNA unfolding at z = -6 charge state. For the first time, candidate gas-phase structures are proposed based on mobility measurements of the i-motif DNA unfolding pathway. Moreover, the inspection of partially unfolded i-motif DNA structures (z = -7 and z = -8 charge states) showed that the presence of inner cations may or may not induce conformational changes in the gas-phase. For example, incorporation of ammonium adducts does not lead to major conformational changes while sodium adducts may lead to the formation of sodium mediated bonds between two negatively charged sides inducing the stabilization towards more compact structures in new local, free energy minima in the gas-phase.


Asunto(s)
ADN/química , Calorimetría , Dicroismo Circular , Citosina/química , ADN/metabolismo , Concentración de Iones de Hidrógeno , Espectrometría de Movilidad Iónica , Cinética , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Espectrometría de Masa por Ionización de Electrospray , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA