Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457046

RESUMEN

DspA/E is a type three effector injected by the pathogenic bacterium Erwinia amylovora inside plant cells. In non-host Arabidopsis thaliana, DspA/E inhibits seed germination, root growth, de novo protein synthesis and triggers localized cell death. To better understand the mechanisms involved, we performed EMS mutagenesis on a transgenic line, 13-1-2, containing an inducible dspA/E gene. We identified three suppressor mutants, two of which belonged to the same complementation group. Both were resistant to the toxic effects of DspA/E. Metabolome analysis showed that the 13-1-2 line was depleted in metabolites of the TCA cycle and accumulated metabolites associated with cell death and defense. TCA cycle and cell-death associated metabolite levels were respectively increased and reduced in both suppressor mutants compared to the 13-1-2 line. Whole genome sequencing indicated that both suppressor mutants displayed missense mutations in conserved residues of Glycolate oxidase 2 (GOX2), a photorespiratory enzyme that we confirmed to be localized in the peroxisome. Leaf GOX activity increased in leaves infected with E. amylovora in a DspA/E-dependent manner. Moreover, the gox2-2 KO mutant was more sensitive to E. amylovora infection and displayed reduced JA-signaling. Our results point to a role for glycolate oxidase in type II non-host resistance and to the importance of central metabolic functions in controlling growth/defense balance.


Asunto(s)
Arabidopsis , Erwinia amylovora , Oxidorreductasas de Alcohol/metabolismo , Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Erwinia amylovora/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
Mol Plant Pathol ; 22(11): 1332-1346, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34382308

RESUMEN

We showed previously that nitrogen (N) limitation decreases Arabidopsis resistance to Erwinia amylovora (Ea). We show that decreased resistance to bacteria in low N is correlated with lower apoplastic reactive oxygen species (ROS) accumulation and lower jasmonic acid (JA) pathway expression. Consistently, pretreatment with methyl jasmonate (Me-JA) increased the resistance of plants grown under low N. In parallel, we show that in planta titres of a nonvirulent type III secretion system (T3SS)-deficient Ea mutant were lower than those of wildtype Ea in low N, as expected, but surprisingly not in high N. This lack of difference in high N was consistent with the low expression of the T3SS-encoding hrp virulence genes by wildtype Ea in plants grown in high N compared to plants grown in low N. This suggests that expressing its virulence factors in planta could be a major limiting factor for Ea in the nonhost Arabidopsis. To test this hypothesis, we preincubated Ea in an inducing medium that triggers expression of hrp genes in vitro, prior to inoculation. This preincubation strongly enhanced Ea titres in planta, independently of the plant N status, and was correlated to a significant repression of JA-dependent genes. Finally, we identify two clusters of metabolites associated with resistance or with susceptibility to Ea. Altogether, our data showed that high susceptibility of Arabidopsis to Ea, under low N or following preincubation in hrp-inducing medium, is correlated with high expression of the Ea hrp genes in planta and low expression of the JA signalling pathway, and is correlated with the accumulation of specific metabolites.


Asunto(s)
Arabidopsis , Proteínas Bacterianas/genética , Erwinia amylovora , Nitratos/metabolismo , Arabidopsis/microbiología , Ciclopentanos/farmacología , Erwinia amylovora/genética , Erwinia amylovora/patogenicidad , Regulación Bacteriana de la Expresión Génica , Oxilipinas/farmacología , Enfermedades de las Plantas/microbiología , Virulencia/genética
3.
Commun Biol ; 4(1): 727, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117349

RESUMEN

Lytic Polysaccharide Monooxygenases (LPMOs) are powerful redox enzymes able to oxidatively cleave recalcitrant polysaccharides. Widely conserved across biological kingdoms, LPMOs of the AA9 family are deployed by phytopathogens to deconstruct cellulose polymers. In response, plants have evolved sophisticated mechanisms to sense cell wall damage and thus self-triggering Damage Triggered Immunity responses. Here, we show that Arabidopsis plants exposed to LPMO products triggered the innate immunity ultimately leading to increased resistance to the necrotrophic fungus Botrytis cinerea. We demonstrated that plants undergo a deep transcriptional reprogramming upon elicitation with AA9 derived cellulose- or cello-oligosaccharides (AA9_COS). To decipher the specific effects of native and oxidized LPMO-generated AA9_COS, a pairwise comparison with cellobiose, the smallest non-oxidized unit constituting cellulose, is presented. Moreover, we identified two leucine-rich repeat receptor-like kinases, namely STRESS INDUCED FACTOR 2 and 4, playing a crucial role in signaling the AA9_COS-dependent responses such as camalexin production. Furthermore, increased levels of ethylene, jasmonic and salicylic acid hormones, along with deposition of callose in the cell wall was observed. Collectively, our data reveal that LPMOs might play a crucial role in plant-pathogen interactions.


Asunto(s)
Arabidopsis/inmunología , Botrytis/inmunología , Celulosa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oligosacáridos/metabolismo , Enfermedades de las Plantas/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/fisiología , Oligosacáridos/fisiología , Enfermedades de las Plantas/microbiología , Sordariales/metabolismo
4.
J Exp Bot ; 72(4): 1020-1033, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33188434

RESUMEN

Current environmental and climate changes are having a pronounced influence on the outcome of plant-pathogen interactions, further highlighting the fact that abiotic stresses strongly affect biotic interactions at various levels. For instance, physiological parameters such as plant architecture and tissue organization together with primary and specialized metabolism are affected by environmental constraints, and these combine to make an individual plant either a more or less suitable host for a given pathogen. In addition, abiotic stresses can affect the timely expression of plant defense and pathogen virulence. Indeed, several studies have shown that variations in temperature, and in water and mineral nutrient availability affect the expression of plant defense genes. The expression of virulence genes, known to be crucial for disease outbreak, is also affected by environmental conditions, potentially modifying existing pathosystems and paving the way for emerging pathogens. In this review, we summarize our current knowledge on the impact of abiotic stress on biotic interactions at the transcriptional level in both the plant and the pathogen side of the interaction. We also perform a metadata analysis of four different combinations of abiotic and biotic stresses, which identifies 197 common modulated genes with strong enrichment in Gene Ontology terms related to defense . We also describe the multistress-specific responses of selected defense-related genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Expresión Génica , Genes de Plantas , Enfermedades de las Plantas/genética , Plantas/genética
5.
Mol Plant Pathol ; 21(11): 1436-1450, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32939948

RESUMEN

Plant nitrogen (N) fertilization is known to affect disease; however, the underlying mechanisms remain mostly unknown. We investigated the impact of N supply on the Arabidopsis thaliana-Botrytis cinerea interaction. A. thaliana plants grown in low nitrate were more tolerant to all wild-type B. cinerea strains tested. We determined leaf nitrate concentrations and showed that they had a limited impact on B. cinerea growth in vitro. For the first time, we performed a dual RNA-Seq of infected leaves of plants grown with different nitrate concentrations. Transcriptome analysis showed that plant and fungal transcriptomes were marginally affected by plant nitrate supply. Indeed, only a limited set of plant (182) and fungal (22) genes displayed expression profiles altered by nitrate supply. The expression of selected genes was confirmed by quantitative reverse transcription PCR at 6 hr postinfection (hpi) and analysed at a later time point (24 hpi). We selected three of the 22 B. cinerea genes identified for further analysis. B. cinerea mutants affected in these genes were less aggressive than the wild-type strain. We also showed that plants grown in ammonium were more tolerant to B. cinerea. Furthermore, expression of the selected B. cinerea genes in planta was altered when plants were grown with ammonium instead of nitrate, demonstrating an impact of the nature of N supplied to plants on the interaction. Identification of B. cinerea genes expressed differentially in planta according to plant N supply unveils two novel virulence functions required for full virulence in A. thaliana: a secondary metabolite (SM) and an acidic protease (AP).


Asunto(s)
Compuestos de Amonio/administración & dosificación , Arabidopsis/microbiología , Botrytis/patogenicidad , Nitratos/administración & dosificación , Nitrógeno/administración & dosificación , Enfermedades de las Plantas/microbiología , Transcriptoma , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Botrytis/genética , Botrytis/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Mutación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Virulencia , Factores de Virulencia/genética
6.
J Exp Bot ; 71(15): 4578-4590, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31930315

RESUMEN

Nitrogen (N) is an essential nutrient that plants require for the synthesis of amino acids, proteins, and many other important metabolites. Plant metabolism and growth are consequently dependent on the amount of N that is assimilated and distributed from source leaves to developing sinks, such as fruits and seeds. The environmental stresses enhanced by climate change deeply influence seed yield and seed composition, and may disturb N use efficiency (NUE) in pants. We aimed to investigate plant responses to extreme climates with regard to NUE, N remobilization efficiency, and seed composition. By studying a collection of Arabidopsis genotypes showing a range of C:N ratios in seeds, we investigated the impact of different post-flowering growth conditions (control, heat, drought, low nitrate availability, induced senescence, and induced plant defense) on seed yield, N allocation in organs, NUE, and N remobilization efficiency. We analysed how post-flowering stresses could change seed filling and showed that post-flowering stresses change both the range of N and C concentrations and the C:N stoichiometry in seeds. Using a new trait, called delta seed composition, we measured the deviation in C:N stoichiometry of each genotype and revealed the genetic determinism of the C:N stoichiometry. Altogether, the results indicate that extreme climate impacts NUE dramatically in plants and generates different bottlenecks in N fluxes during seed filling.


Asunto(s)
Arabidopsis , Hojas de la Planta , Estrés Fisiológico , Arabidopsis/genética , Nitrógeno , Semillas
7.
Proc Natl Acad Sci U S A ; 116(39): 19743-19752, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501325

RESUMEN

Despite an ever-increasing interest for the use of pectin-derived oligogalacturonides (OGs) as biological control agents in agriculture, very little information exists-mainly for technical reasons-on the nature and activity of the OGs that accumulate during pathogen infection. Here we developed a sensitive OG profiling method, which revealed unsuspected features of the OGs generated during infection of Arabidopsis thaliana with the fungus Botrytis cinerea Indeed, in contrast to previous reports, most OGs were acetyl- and methylesterified, and 80% of them were produced by fungal pectin lyases, not by polygalacturonases. Polygalacturonase products did not accumulate as larger size OGs but were converted into oxidized GalA dimers. Finally, the comparison of the OGs and transcriptomes of leaves infected with B. cinerea mutants with reduced pectinolytic activity but with decreased or increased virulence, respectively, identified candidate OG elicitors. In conclusion, OG analysis provides insights into the enzymatic arms race between plant and pathogen and facilitates the identification of defense elicitors.


Asunto(s)
Arabidopsis/metabolismo , Botrytis/patogenicidad , Ácidos Hexurónicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Pectinas/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Poligalacturonasa/metabolismo , Transducción de Señal
8.
J Exp Bot ; 70(4): 1349-1365, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30715439

RESUMEN

Small secreted peptides are important players in plant development and stress response. Using a targeted in silico approach, we identified a family of 14 Arabidopsis genes encoding precursors of serine-rich endogenous peptides (PROSCOOP). Transcriptomic analyses revealed that one member of this family, PROSCOOP12, is involved in processes linked to biotic and oxidative stress as well as root growth. Plants defective in this gene were less susceptible to Erwinia amylovora infection and showed an enhanced root growth phenotype. In PROSCOOP12 we identified a conserved motif potentially coding for a small secreted peptide. Exogenous application of synthetic SCOOP12 peptide induces various defense responses in Arabidopsis. Our findings show that SCOOP12 has numerous properties of phytocytokines, activates the phospholipid signaling pathway, regulates reactive oxygen species response, and is perceived in a BAK1 co-receptor-dependent manner.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Genes de Plantas , Péptidos y Proteínas de Señalización Intercelular/fisiología , Familia de Multigenes , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Raíces de Plantas/genética , Transducción de Señal
9.
Int J Mol Sci ; 19(11)2018 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-30373239

RESUMEN

In their natural environment, plants are generally confronted with multiple co-occurring stresses. However, the interaction between stresses is not well known and transcriptomic data in response to combined stresses remain scarce. This study aims at characterizing the interaction between transcriptomic responses to biotic stress and nitrogen (N) limitation. Plants were grown in low or full N, infected or not with Erwinia amylovora (Ea) and plant gene expression was analyzed through microarray and qRT-PCR. Most Ea-responsive genes had the same profile (induced/repressed) in response to Ea in low and full N. In response to stress combination, one third of modulated transcripts responded in a manner that could not be deduced from their response to each individual stress. Many defense-related genes showed a prioritization of their response to biotic stress over their response to N limitation, which was also observed using Pseudomonas syringae as a second pathosystem. Our results indicate an interaction between transcriptomic responses to N and biotic stress. A small fraction of transcripts was prioritized between antagonistic responses, reflecting a preservation of the plant defense program under N limitation. Furthermore, this interaction also led to a complex and specific response in terms of metabolism and cellular homeostasis-associated genes.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Estrés Fisiológico , Arabidopsis/metabolismo , Arabidopsis/microbiología , Erwinia amylovora/patogenicidad , Nitrógeno/deficiencia , Inmunidad de la Planta , Transcriptoma
10.
Mol Plant Pathol ; 19(2): 313-327, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27925401

RESUMEN

Soft-rot diseases of plants attributed to Dickeya dadantii result from lysis of the plant cell wall caused by pectic enzymes released by the bacterial cell by a type II secretion system (T2SS). Arabidopsis thaliana can express several lines of defence against this bacterium. We employed bacterial mutants with defective envelope structures or secreted proteins to examine early plant defence reactions. We focused on the production of AtrbohD-dependent reactive oxygen species (ROS), callose deposition and cell death as indicators of these reactions. We observed a significant reduction in ROS and callose formation with a bacterial mutant in which genes encoding five pectate lyases (Pels) were disrupted. Treatment of plant leaves with bacterial culture filtrates containing Pels resulted in ROS and callose production, and both reactions were dependent on a functional AtrbohD gene. ROS and callose were produced in response to treatment with a cellular fraction of a T2SS-negative mutant grown in a Pels-inducing medium. Finally, ROS and callose were produced in leaves treated with purified Pels that had also been shown to induce the expression of jasmonic acid-dependent defence genes. Pel catalytic activity is required for the induction of ROS accumulation. In contrast, cell death observed in leaves infected with the wild-type strain appeared to be independent of a functional AtrbohD gene. It was also independent of the bacterial production of pectic enzymes and the type III secretion system (T3SS). In conclusion, the work presented here shows that D. dadantii is recognized by the A. thaliana innate immune system through the action of pectic enzymes secreted by bacteria at the site of infection. This recognition leads to AtrbohD-dependent ROS and callose accumulation, but not cell death.


Asunto(s)
Arabidopsis/inmunología , Gammaproteobacteria/enzimología , Polisacárido Liasas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Glucanos/metabolismo , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Oligosacáridos/metabolismo , Polisacárido Liasas/genética , Especies Reactivas de Oxígeno/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Virulencia/genética , Virulencia/fisiología
11.
Front Plant Sci ; 8: 394, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28400777

RESUMEN

Among the most devastating bacterial diseases of plants, soft rot provoked by Dickeya spp. cause crop yield losses on a large range of species with potato being the most economically important. The use of antibiotics being prohibited in most countries in the field, identifying tolerance genes is expected to be one of the most effective alternate disease control approaches. A prerequisite for the identification of tolerance genes is to develop robust disease quantification methods and to identify tolerant plant genotypes. In this work, we investigate the feasibility of the exploitation of Arabidopsis thaliana natural variation to find tolerant genotypes and to develop robust quantification methods. We compared different quantification methods that score either symptom development or bacterial populations in planta. An easy to set up and reliable bacterial quantification method based on qPCR amplification of bacterial DNA was validated. This study demonstrates that it is possible to conduct a robust phenotyping of soft rot disease, and that Arabidopsis natural accessions are a relevant source of tolerance genes.

12.
Mol Plant Pathol ; 18(4): 540-554, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27085087

RESUMEN

Disease has an effect on crop yields, causing significant losses. As the worldwide demand for agricultural products increases, there is a need to pursue the development of new methods to protect crops from disease. One mechanism of plant protection is through the activation of the plant immune system. By exogenous application, 'plant activator molecules' with elicitor properties can be used to activate the plant immune system. These defence-inducing molecules represent a powerful and often environmentally friendly tool to fight pathogens. We show that the secondary bile acid deoxycholic acid (DCA) induces defence in Arabidopsis and reduces the proliferation of two bacterial phytopathogens: Erwinia amylovora and Pseudomonas syringae pv. tomato. We describe the global defence response triggered by this new plant activator in Arabidopsis at the transcriptional level. Several induced genes were selected for further analysis by quantitative reverse transcription-polymerase chain reaction. We describe the kinetics of their induction and show that abiotic stress, such as moderate drought or nitrogen limitation, does not impede DCA induction of defence. Finally, we investigate the role in the activation of defence by this bile acid of the salicylic acid biosynthesis gene SID2, of the receptor-like kinase family genes WAK1-3 and of the NADPH oxidase-encoding RbohD gene. Altogether, we show that DCA constitutes a promising molecule for plant protection which can induce complementary lines of defence, such as callose deposition, reactive oxygen species accumulation and the jasmonic acid and salicylic acid signalling pathways.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Ácido Desoxicólico/farmacología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cinética , Enfermedades de las Plantas/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
13.
Front Plant Sci ; 7: 545, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27200021

RESUMEN

The bacterium Erwinia amylovora is responsible for the fire blight disease of Maleae, which provokes necrotic symptoms on aerial parts. The pathogenicity of this bacterium in hosts relies on its type three-secretion system (T3SS), a molecular syringe that allows the bacterium to inject effectors into the plant cell. E. amylovora-triggered disease in host plants is associated with the T3SS-dependent production of reactive oxygen species (ROS), although ROS are generally associated with resistance in other pathosystems. We showed previously that E. amylovora can multiply transiently in the non-host plant Arabidopsis thaliana and that a T3SS-dependent production of intracellular ROS occurs during this interaction. In the present work we characterize the localization and source of hydrogen peroxide accumulation following E. amylovora infection. Transmission electron microscope (TEM) analysis of infected tissues showed that hydrogen peroxide accumulation occurs in the cytosol, plastids, peroxisomes, and mitochondria as well as in the apoplast. Furthermore, TEM analysis showed that an E. amylovora dspA/E-deficient strain does not induce hydrogen peroxide accumulation in the apoplast. Consistently, a transgenic line expressing DspA/E accumulated ROS in the apoplast. The NADPH oxidase-deficient rbohD mutant showed a very strong reduction in hydrogen peroxide accumulation in response to E. amylovora inoculation. However, we did not find an increase in bacterial titers of E. amylovora in the rbohD mutant and the rbohD mutation did not suppress the toxicity of DspA/E when introgressed into a DspA/E-expressing transgenic line. Co-inoculation of E. amylovora with cycloheximide (CHX), which we found previously to suppress callose deposition and allow strong multiplication of E. amylovora in A. thaliana leaves, led to a strong reduction of apoplastic ROS accumulation but did not affect intracellular ROS. Our data strongly suggest that apoplastic ROS accumulation is one layer of the non-host defense response triggered by the type three effector (T3E) DspA/E, together with callose deposition.

14.
J Exp Bot ; 65(19): 5643-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25080088

RESUMEN

Nitrogen (N) is essential for life and is a major limiting factor of plant growth. Because soils frequently lack sufficient N, large quantities of inorganic N fertilizers are added to soils for crop production. However, nitrate, urea, and ammonium are a major source of global pollution, because much of the N that is not taken up by plants enters streams, groundwater, and lakes, where it affects algal production and causes an imbalance in aquatic food webs. Many agronomical data indicate that the higher use of N fertilizers during the green revolution had an impact on the incidence of crop diseases. In contrast, examples in which a decrease in N fertilization increases disease severity are also reported, indicating that there is a complex relationship linking N uptake and metabolism and the disease infection processes. Thus, although it is clear that N availability affects disease, the underlying mechanisms remain unclear. The aim of this review is to describe current knowledge of the mechanisms that link plant N status to the plant's response to pathogen infection and to the virulence and nutritional status of phytopathogens.


Asunto(s)
Nitrógeno/metabolismo , Enfermedades de las Plantas/inmunología , Patología de Plantas , Plantas/metabolismo , Resistencia a la Enfermedad , Contaminación Ambiental , Fertilizantes , Metaboloma , Nitratos/metabolismo , Plantas/inmunología , Plantas/microbiología , Suelo/química , Transcriptoma , Urea/metabolismo
15.
PLoS One ; 9(6): e99343, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24914891

RESUMEN

Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Inmunidad de la Planta , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Botrytis , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Glucosinolatos/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Modelos Biológicos , Mutación/genética , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Pseudomonas syringae/fisiología , Proteínas de Unión al ARN/genética , Ácido Salicílico/metabolismo , Transducción de Señal/genética , Estrés Fisiológico/genética , Transcriptoma/genética
16.
Mol Plant Pathol ; 14(5): 506-17, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23634775

RESUMEN

The type III effector DspA/E is an essential pathogenicity factor of the phytopathogenic bacterium Erwinia amylovora. We showed that DspA/E was required for transient bacterial growth in nonhost Arabidopsis thaliana leaves, as an E. amylovora dspA/E mutant was unable to grow. We expressed DspA/E in A. thaliana transgenic plants under the control of an oestradiol-inducible promoter, and found that DspA/E expressed in planta restored the growth of a dspA/E mutant. DspA/E expression in these transgenic plants led to the modulation by at least two-fold of the expression of 384 genes, mostly induced (324 genes). Both induced and repressed genes contained high proportions of defence genes. DspA/E expression ultimately resulted in plant cell death without requiring a functional salicylic acid signalling pathway. Analysis of A. thaliana transgenic seedlings expressing a green fluorescent protein (GFP):DspA/E fusion indicated that the fusion protein could only be detected in a few cells per seedling, suggesting the degradation or absence of accumulation of DspA/E in plant cells. Consistently, we found that DspA/E repressed plant protein synthesis when injected by E. amylovora or when expressed in transgenic plants. Thus, we conclude that DspA/E is toxic to A. thaliana: it promotes modifications, among which the repression of protein synthesis could be determinant in the facilitation of necrosis and bacterial growth.


Asunto(s)
Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Erwinia amylovora/crecimiento & desarrollo , Erwinia amylovora/metabolismo , Viabilidad Microbiana , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Nucléolo Celular/metabolismo , Electrólitos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Glucanos/metabolismo , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Biosíntesis de Proteínas , Pseudomonas syringae/fisiología , Ácido Salicílico/metabolismo
17.
PLoS One ; 7(8): e42491, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22880003

RESUMEN

The high affinity nitrate transport system in Arabidopsis thaliana involves one gene and potentially seven genes from the NRT1 and NRT2 family, respectively. Among them, NRT2.1, NRT2.2, NRT2.4 and NRT2.7 proteins have been shown to transport nitrate and are localized on the plasmalemma or the tonoplast membranes. NRT2.1, NRT2.2 and NRT2.4 play a role in nitrate uptake from soil solution by root cells while NRT2.7 is responsible for nitrate loading in the seed vacuole. We have undertaken the functional characterization of a third member of the family, the NRT2.6 gene. NRT2.6 was weakly expressed in most plant organs and its expression was higher in vegetative organs than in reproductive organs. Contrary to other NRT2 members, NRT2.6 expression was not induced by limiting but rather by high nitrogen levels, and no nitrate-related phenotype was found in the nrt2.6-1 mutant. Consistently, the over-expression of the gene failed to complement the nitrate uptake defect of an nrt2.1-nrt2.2 double mutant. The NRT2.6 expression is induced after inoculation of Arabidopsis thaliana by the phytopathogenic bacterium Erwinia amylovora. Interestingly, plants with a decreased NRT2.6 expression showed a lower tolerance to pathogen attack. A correlation was found between NRT2.6 expression and ROS species accumulation in response to infection by E. amylovora and treatment with the redox-active herbicide methyl viologen, suggesting a probable link between NRT2.6 activity and the production of ROS in response to biotic and abiotic stress.


Asunto(s)
Proteínas de Transporte de Anión/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas/genética , Estrés Fisiológico/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Erwinia amylovora/efectos de los fármacos , Erwinia amylovora/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genotipo , Mutación/genética , Nitratos/metabolismo , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Paraquat/farmacología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo , Transcripción Genética/efectos de los fármacos
18.
Mol Plant Microbe Interact ; 25(3): 421-30, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22316300

RESUMEN

Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Proteínas de Unión al ADN/inmunología , Erwinia amylovora/patogenicidad , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cicloheximida/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Erwinia amylovora/efectos de los fármacos , Erwinia amylovora/crecimiento & desarrollo , Erwinia amylovora/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Glucanos/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , ARN de Planta/genética , Transcriptoma
19.
Mol Plant Microbe Interact ; 24(5): 577-84, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21463207

RESUMEN

Erwinia amylovora is responsible for fire blight of apple and pear trees. Its pathogenicity depends on a type III secretion system (T3SS) mediating the translocation of effectors into the plant cell. The DspA/E effector suppresses callose deposition on apple leaves. We found that E. amylovora and Pseudomonas syringae DC3000 tts mutants or peptide flg22 do not trigger callose deposition as strongly as the dspA/E mutant on apple leaves. This suggests that, on apple leaves, callose deposition is poorly elicited by pathogen-associated molecular patterns (PAMPs) such as flg22 or other PAMPs harbored by tts mutants and is mainly elicited by injected effectors or by the T3SS itself. Callose elicitation partly depends on HrpW because an hrpW-dspA/E mutant elicits lower callose deposition than a dspA/E mutant. Furthermore, an hrpN-dspA/E mutant does not trigger callose deposition, indicating that HrpN is required to trigger this plant defense reaction. We showed that HrpN plays a general role in the translocation process. Thus, the HrpN requirement for callose deposition may be explained by its role in translocation: HrpN could be involved in the translocation of other effectors inducing callose deposition. Furthermore, HrpN may also directly contribute to the elicitation process because we showed that purified HrpN induces callose deposition.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Erwinia amylovora/metabolismo , Glucanos/metabolismo , Malus/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Erwinia amylovora/patogenicidad , Malus/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Transporte de Proteínas , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidad
20.
FEBS Open Bio ; 1: 23-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23650572

RESUMEN

Erwinia amylovora is responsible for fire blight, a necrotic disease of apples and pears. E. amylovora relies on a type III secretion system (T3SS) to induce disease on host plants. DspA/E belongs to the AvrE family of type III effector. Effectors of the AvrE family are injected via the T3SS in plant cell and are important to promote bacterial growth following infection and to suppress plant defense responses. Their mode of action in the plant cells is unknown. Here we study the physiological effects induced by dspA/E expression in the yeast Saccharomyces cerevisiae. Expression of dspA/E in the yeast inhibits cell growth. This growth inhibition is associated with perturbations of the actin cytoskeleton and endocytosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA