Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Vet Res Commun ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965174

RESUMEN

The aim of this study was to assess the changes of pro-inflammatory interleukins in 10 horses subjected to road transport practices (distance of 150 km) from the training site (Messina, Sicily) to the competition centre in Syracuse (Sicily). Blood sampling and interleukins analysis were performed during a round trip transportation (transport 1 and transport 2). In particular, blood samples were collected before the transport took place (Pre), five minutes later (Post) and one hour later (Post 1 h), for each transport, in order to assess the serum concentration of IL-1α, IL-1ß, IL-2 and IL-6. The results showed that the serum concentration of IL-1α decreased at Post and Post 1 h compared to the values obtained at rest condition (P < 0.05). The other interleukins analysed (i.e. IL-1ß, IL-2 and IL-6) showed increased levels at Post than Rest and Post 1 h in transport 1 (P < 0.05). In transport 2 the analysed parameters showed no change throughout the analysed time points (P > 0.05); however, higher levels of IL-1α at Pre and higher IL-1ß, IL-2 and IL-6 values at Post were found in transport 1 than transport 2 (P < 0.05). The increase in pro-inflammatory cytokines after transport 1 suggests the triggering of the inflammatory event and this may show that, although horses are animals accustomed to transport, this is a stressful event that could activate the well-orchestrated inflammation cascade, albeit physiological and temporary, as highlighted by the lower serum concentrations of the investigated interleukins found in transport 1 than transport 2 and by the lack of significant differences in the serum concentrations of the investigated interleukins among the time points of transport 2. It must be taken into account that enrolled animals are well-trained and healthy athletic horses participating to a jumper competition, thus, such inflammation did not occur thanks to a good balance between pro-inflammatory and anti-inflammatory cytokines which allowed a prompt restoration of homeostasis eventually impaired by the stressful event.

2.
J Fish Dis ; : e13994, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953153

RESUMEN

The aquaculture sector plays a vital role in global food security, yet it grapples with significant challenges posed by infectious diseases. Piscine lactococcosis is one of the significant threats in rainbow trout aquaculture due to its potential to cause severe economic losses through mortalities, reduced growth rates, and increased susceptibility to other pathogens. It poses challenges in disease management strategies, impacting the sustainability and profitability of rainbow trout farming. The current study focuses on the variations in serum blood parameters of farmed rainbow trout Oncorhynchus mykiss during a lactococcosis outbreak caused by Lactococcus garvieae. Blood samples were collected for biochemical analysis, fish were examined for parasites and bacteria, and DNA from bacterial colonies was PCR-amplified and sequenced for identification. Overall, 13 biochemical parameters, including proteins, enzymes, lipids, chemicals, and minerals, were measured in serum blood samples from both diseased and healthy fish. The results indicate significant alterations in the levels of these parameters during the outbreak, highlighting the impact of infections on the blood profile of farmed rainbow trout. Urea levels were significantly higher in diseased fish compared to controls, and creatinine, phosphorus, and magnesium also showed similar trends. Alanine aminotransferase and total protein levels were higher in control fish. Chloride levels differed significantly between groups. Iron levels were higher in controls and lower in diseased fish. No significant differences were found in other parameters. This study reveals significant changes in serum blood parameters of rainbow trout during a lactococcosis outbreak caused by L. garvieae. These changes highlight the potential of these parameters as tools for monitoring health status, stress, and aquaculture management. Continuous monitoring can provide valuable insights into disease severity and overall fish health, aiding in the development of improved management practices. The presented data contribute to understanding the pathophysiology of piscine lactococcosis and developing effective mitigation strategies for farmed rainbow trout.

3.
Sci Total Environ ; 948: 174809, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39019277

RESUMEN

In recent years, emerging environmental pollutants have increasingly endangered the health of freshwater organisms. The gut microbiota exhibits sensitivity to medications, dietary factors and environmental pollutants, rendering it a novel target for toxicological studies. The gut microbiota can be a potential exposure route affecting the host's health. Herein, we review the current knowledge on two different but concurrent pollutants, microplastics and pesticides, regarding their impact on the gut microbiota, which includes alterations in microbial composition, gene expression, function, and health effects in the hosts. Moreover, synergetic interactions between microplastics and pesticides can exacerbate dysbiosis and health risks. We discuss health-related implications of gut microbial changes based on the consequences in metabolism, immunity, and physiology function. Further research is needed to discover the mechanisms underlying these effects and develop strategies for mitigating their harmful impacts on freshwater animals.


Asunto(s)
Agua Dulce , Microbioma Gastrointestinal , Microplásticos , Plaguicidas , Contaminantes Químicos del Agua , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Animales , Plaguicidas/toxicidad
4.
J Contam Hydrol ; 266: 104399, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39033703

RESUMEN

Improper disposal of household and industrial waste into water bodies has transformed them into de facto dumping grounds. Plastic debris, weathered on beaches degrades into micro-particles and releases chemical additives that enter the water. Microplastic contamination is documented globally in both marine and freshwater environments, posing a significant threat to aquatic ecosystems. The small size of these particles makes them susceptible to ingestion by low trophic fauna, a trend expected to escalate. Ingestion leads to adverse effects like intestinal blockages, alterations in lipid metabolism, histopathological changes in the intestine, contributing to the extinction of vulnerable species and disrupting ecosystem balance. Notably, microplastics (MPs) can act as carriers for pathogens, potentially causing impaired reproductive activity, decreased immunity, and cancer in various organisms. Studies have identified seven principal sources of MPs, including synthetic textiles (35%) and tire abrasion (28%), highlighting the significant human contribution to this pollution. This review covers various aspects of microplastic pollution, including sources, extraction methods, and its profound impact on ecosystems. Additionally, it explores preventive measures, aiming to guide researchers in selecting techniques and inspiring further investigation into the far-reaching impacts of microplastic pollution, fostering effective solutions for this environmental challenge.

5.
Aquat Toxicol ; 273: 107014, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38954870

RESUMEN

In the last decades, pharmaceuticals have emerged as a new class of environmental contaminants. Antihypertensives, including angiotensin-converting enzyme (ACE) inhibitors, are of special concern due to their increased consumption over the past years. However, the available data on their putative effects on the health of aquatic animals, as well as the possible interaction with biological systems are still poorly understood. This study analysed whether and to which extent the exposure to Enalapril, an ACE inhibitor commonly used for treating hypertension and heart failure, may induce morpho-functional alterations in the mussel Mytilus galloprovincialis, a sentinel organism of water pollution. By mainly focusing on the digestive gland (DG), a target tissue used for analysing the effects of xenobiotics in mussels, the effects of 10-days exposure to 0.6 ng/L (E1) and 600 ng/L (E2) of Enalapril were investigated in terms of cell viability and volume regulation, morphology, oxidative stress, and stress protein expression and localization. Results indicated that exposure to Enalapril compromised the capacity of DG cells from the E2 group to regulate volume by limiting the ability to return to the original volume after hypoosmotic stress. This occurred without significant effects on DG cell viability. Enalapril unaffected also haemocytes viability, although an increased infiltration of haemocytes was histologically observed in DG from both groups, suggestive of an immune response. No changes were observed in the two experimental groups on expression and tissue localization of heat shock proteins 70 (HSPs70) and HSP90, and on the levels of oxidative biomarkers. Our results showed that, in M. galloprovincialis the exposure to Enalapril did not influence the oxidative status, as well as the expression and localization of stress-related proteins, while it activated an immune response and compromised the cell ability to face osmotic changes, with potential consequences on animal performance.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Enalapril , Mytilus , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Inhibidores de la Enzima Convertidora de Angiotensina/toxicidad , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Mytilus/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
6.
Antioxidants (Basel) ; 13(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38929173

RESUMEN

Pharmaceutical and personal care products (PPCPs) containing persistent and potentially hazardous substances have garnered attention for their ubiquitous presence in natural environments. This study investigated the impact of polyethylene glycol (PEG), a common PPCP component, on Mytilus galloprovincialis. Mussels were subjected to two PEG concentrations (E1: 0.1 mg/L and E2: 10 mg/L) over 14 days. Oxidative stress markers in both gills and digestive glands were evaluated; cytotoxicity assays were performed on haemolymph and digestive gland cells. Additionally, cell volume regulation (RVD assay) was investigated to assess physiological PEG-induced alterations. In the gills, PEG reduced superoxide dismutase (SOD) activity and increased lipid peroxidation (LPO) at E1. In the digestive gland, only LPO was influenced, while SOD activity and oxidatively modified proteins (OMPs) were unaltered. A significant decrease in cell viability was observed, particularly at E2. Additionally, the RVD assay revealed disruptions in the cells subjected to E2. These findings underscore the effects of PEG exposure on M. galloprovincialis. They are open to further investigations to clarify the environmental implications of PPCPs and the possibility of exploring safer alternatives.

7.
Sci Total Environ ; 946: 173809, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38848913

RESUMEN

Drugs are chemical compounds used to treat and improve organic dysfunctions caused by diseases. These include analgesics, antibiotics, antidepressants, and antineoplastics. They can enter aquatic environments through wastewater streams, where their physico-chemical properties allow metabolites to distribute and accumulate. Current climate change and associated extreme weather events may significantly impact these substances' toxicity and aquatic organisms' sensitivity. Among the chemicals present in aquatic environments is the non-steroidal anti-inflammatory drug diclofenac (DIC), which the EU monitors due to its concentration levels. This study investigated the influence of temperature (control at 17 °C vs. 21 °C) on the effects of DIC (0 µg/L vs. 1 µg/L) in the mussel species Mytilus galloprovincialis. Significant results were observed between 17 and 21 °C. Organisms exposed to the higher temperature showed a decrease in several parameters, including metabolic capacity and detoxification, particularly with prolonged exposure. However, in some parameters, after 21 days, the M. galloprovincialis showed no differences from the control, indicating adaptation to the stress. The results of this study confirm that DIC concentrations in the environment, particularly when combined with increased temperatures, can produce oxidative stress and adversely affect M. galloprovincialis biochemical and physiological performance. This study also validates this species as a bioindicator for assessing environmental contamination with DIC. Beyond its direct impact on aquatic organisms, the presence of pharmaceuticals like DIC in the environment highlights the interconnectedness of human, animal, and ecosystem health, underscoring the One Health approach to understanding and mitigating environmental pollution.


Asunto(s)
Diclofenaco , Monitoreo del Ambiente , Mytilus , Contaminantes Químicos del Agua , Mytilus/efectos de los fármacos , Mytilus/fisiología , Diclofenaco/toxicidad , Animales , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente/métodos , Antiinflamatorios no Esteroideos/toxicidad , Cambio Climático , Especies Centinela
8.
Sci Total Environ ; 933: 173154, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735322

RESUMEN

Personal Care Products (PCPs) have been one of the most studied chemicals in the last twenty years since they were identified as pseudo-persistent pollutants by the European Union in the early 2000s. The accumulation of PCPs in the aquatic environment and their effects on non-target species make it necessary to find new, less harmful, substances. Polyethylene glycol (PEGs) and polyvinyl alcohol (PVAs) are two polymers that have increased their presence in the composition of PCPs in recent years, but little is known about the effect of their accumulation in the environment on non-target species. Through embryotoxicity tests on two common models of aquatic organisms (Danio rerio and Xenopus laevis), this work aims to increase the knowledge of PEGs and PVAs' effects on non-target species. Animals were exposed to the pollutant for 96 h. The main embryotoxicity endpoint (mortality, hatching, malformations, heartbeat rate) was recorded every 24 h. The most significant results were hatching delay in Danio rerio exposed to both chemicals, in malformations (oedema, body malformations, changes in pigmentation and deformations of spine and tail) in D. rerio and X. laevis and significant change in the heartbeat rate (decrease or increase in the rate) in both animals for all chemicals tested.


Asunto(s)
Embrión no Mamífero , Polietilenglicoles , Alcohol Polivinílico , Contaminantes Químicos del Agua , Pez Cebra , Animales , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Alcohol Polivinílico/toxicidad , Alcohol Polivinílico/química , Polietilenglicoles/toxicidad , Xenopus laevis , Pruebas de Toxicidad
9.
Ecotoxicol Environ Saf ; 279: 116514, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810286

RESUMEN

The aim of this study is to evaluate the toxic effects of different concentrations of cigarette butt leachate (CBL) (0.0, 0.5, 1, 1.5, and 2.0 µL L-1) on blood biochemistry, oxidative stress biomarkers, and the biochemical profile of the liver and muscle of Nile tilapia fish (Oreochromis niloticus) after 21 days. Increased activity of lactate dehydrogenase (LDH), gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) in plasma, and decreased activity of alkaline phosphatase (ALP) in fish exposed to CBL, indicated cytotoxicity. Elevated cholesterol, triglycerides, and glucose levels, coupled with reduced total protein, albumin, and globulin levels in the plasma, indicated impaired liver function in the fish. An increase in creatinine showed kidney damage. Increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities, along with the decrease in liver glutathione (GSH) content and total antioxidant capacity in the hepatocytes of fish exposed to CBL, indicated the occurrence of oxidative stress. Malondialdehyde (MDA) elevation indicated heightened lipid peroxidation in CBL-exposed fish hepatocytes. Raman spectroscopy revealed altered biochemical profiles in fish liver and muscle post-CBL exposure. The results demonstrated that exposure to CBL led to a decrease in phospholipid levels, collagen destruction, changes in phenylalanine levels, and a decrease in the levels of lipids, proteins, and nucleic acids in fish liver and muscle tissue. Furthermore, the metabolites and compounds of cigarette butt juice were detectable in the liver and muscle tissue of fishes. In conclusion, this study showed that exposure to CBL can have adverse effects on fish health.


Asunto(s)
Biomarcadores , Cíclidos , Hígado , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Cíclidos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Biomarcadores/sangre , Contaminantes Químicos del Agua/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Productos de Tabaco/toxicidad , Metaboloma/efectos de los fármacos , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo , Catalasa/metabolismo
10.
Toxics ; 12(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38787128

RESUMEN

The recent availability of commercial platforms for behavioral analyses in zebrafish larvae based on video-tracking technologies has exponentially increased the number of studies analyzing different behaviors in this model organism to assess neurotoxicity. Among the most commonly used assays in zebrafish larvae are basal locomotor activity (BLA) and visual motor responses (VMRs). However, the effect of different intrinsic and extrinsic factors that can significantly alter the outcome of these assays is still not well understood. In this work, we have analyzed the influence of age (5-8 days post-fertilization), time of day (8:00, 10:00, 12:00, 14:00; 16:00, 18:00, and 20:00 h), and experiment (three experiments performed at different days) on BLA and VMR results (4004 analyses for each behavior) in 143 larvae. The results from both behaviors were adjusted to a random-effects linear regression model using generalized least squares (GLSs), including in the model the effect of the three variables, the second-way interactions between them, and the three-way interaction. The results presented in this manuscript show a specific effect of all three intrinsic factors and their interactions on both behaviors, supporting the view that the most stable time period for performing these behavioral assays is from 10:00 am to 04:00 pm, with some differences depending on the age of the larva and the behavioral test.

11.
Heliyon ; 10(7): e28419, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590886

RESUMEN

The study examined the potential of Silymarin, a blend of bioactive flavonolignans extracted from the milk thistle Silybum marianum, to mitigate Deltamethrin-induced toxicity in the blood of Cyprinus carpio. Fish were exposed to Deltamethrin (0.66 µg/L), the plant extract, or a combination of both for a duration of thirty days. Various parameters, including serum biochemical markers, erythrocytic abnormalities, and genotoxicity endpoints, were assessed. Results indicated a significant (p < 0.05) increase in the levels of AST, ALT, ALP, blood urea nitrogen, creatinine, glucose, cholesterol, and TLC in the fish exposed to the pesticide. Conversely, total protein, TEC, and Hb showed a notable decrease. There was also a notable rise in micronuclei and erythrocytic abnormalities such as acanthocytes, microcytes, and notched cells. Under ultrastructural examination, phenotypic deformities like spherocytosis, discocytes, and clumped erythrocytes were observed. However, dietary supplementation of silymarin (1 g/kg) significantly restored the biochemical, genetic, and cellular parameters, resembling those of the control group. This suggests the potential of this plant extract in protecting the common carp, Cyprinus carpio, from Deltamethrin-induced damage by scavenging free radicals and reducing DNA oxidative stress.

12.
J Contam Hydrol ; 262: 104325, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38428349

RESUMEN

Microplastics and heavy metals pollution is recognised as a major problem affecting aquatic ecosystems. For this reason, this study aims to assess the toxicity of different concentrations of polyethylene microplastics (PE-MPs) (0.0, 500, and 1000 µg L-1) with a mean size of 15-25 µm and lead acetate Pb(C2H3O2)2 (0.0, 2.5, and 5 mg L-1), both individually and in combination, through the exposure of the freshwater grass shrimp, Caridinia fossarum for 15 days, focusing on microplastic interaction with co-occurring contaminants. After being exposed to both contaminants, either individually or in combination, significant alterations in numerous biochemical markers were observed. Specifically, exposure to lead acetate alone resulted in significant changes across ALP, AST, ALT, LDH, GGT, and BChE enzyme activity levels indicating hepatotoxicity and neurotoxicity. Also, Pb exposure led to alterations in total antioxidant capacity, MDA, total lipids, and glycogen contents, signalling the onset of oxidative stress. Exposure to PE-MPs alone led to changes in ALP, LDH, GGT, and BChE enzyme levels, and in MDA, total lipids, and glycogen samples' contents. Remarkably, the study observed increased bioaccumulation of lead acetate in samples treated with the combination, emphasizing the synergistic impact of PE-MPs on the toxicity of lead acetate. This synergy was also evident in AST and ALT enzyme activity levels and MDA contents. This underscores the necessity for measures to address both microplastic pollution and heavy metal contamination, taking into account the synergistic behaviour of MPs in the presence of concurrent contaminants.


Asunto(s)
Metales Pesados , Compuestos Organometálicos , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos/toxicidad , Ecosistema , Plomo , Polietileno/toxicidad , Agua Dulce , Glucógeno , Lípidos , Contaminantes Químicos del Agua/toxicidad
13.
Environ Pollut ; 350: 123724, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38462197

RESUMEN

Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salinomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 µg L-1), MP (1 mg L-1, 2 µm size), and both at 18 °C (Mix) and 25 °C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD+/NADH and Zn/Cu ratios and lysosomal integrity and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in the tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18 °C. However, under heating, the levels of NAD+, NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.


Asunto(s)
Microplásticos , Piranos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Piranos/toxicidad , Microplásticos/toxicidad , Bivalvos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ríos/química , Glutatión/metabolismo , Zinc/toxicidad , Oxidación-Reducción , Apoptosis/efectos de los fármacos , Policétidos Poliéteres
14.
Biol Trace Elem Res ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472509

RESUMEN

Residual concentrations of some trace elements and lightweight metals, including cadmium, copper, lead, mercury, silver, zinc, nickel, chromium, arsenic, gallium, indium, gold, cobalt, polonium, and thallium, are widely detected in aquatic ecosystems globally. Although their origin may be natural, human activities significantly elevate their environmental concentrations. Metals, renowned pollutants, threaten various organisms, particularly crustaceans. Due to their feeding habits and habitat, crustaceans are highly exposed to contaminants and are considered a crucial link in xenobiotic transfer through the food chain. Moreover, crustaceans absorb metals via their gills, crucial pathways for metal uptake in water. This review summarises the adverse effects of well-studied metals (Cd, Cu, Pb, Hg, Zn, Ni, Cr, As, Co) and synthesizes knowledge on the toxicity of less-studied metals (Ag, Ga, In, Au, Pl, Tl), their presence in waters, and impact on crustaceans. Bibliometric analysis underscores the significance of this topic. In general, the toxic effects of the examined metals can decrease survival rates by inducing oxidative stress, disrupting biochemical balance, causing histological damage, interfering with endocrine gland function, and inducing cytotoxicity. Metal exposure can also result in genotoxicity, reduced reproduction, and mortality. Despite current toxicity knowledge, there remains a research gap in this field, particularly concerning the toxicity of rare earth metals, presenting a potential future challenge.

15.
Vet Res Commun ; 48(3): 1611-1620, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38413536

RESUMEN

The advancement of nanotechnology and the widespread use of nanoparticles (NPs) in various industries have highlighted the importance of studying the potential harmful effects of nanomaterials on organisms. This study aimed to evaluate the lethal toxicity thresholds of Copper Oxide Nanoparticles (CuO-NPs). The investigation focused on examining the sub-lethal toxicity effects of CuO-NPs on blood parameters, as well as their influence on the gill tissue and liver of goldfish (Carassius auratus). Goldfish were exposed to varying concentrations of CuO-NPs (10, 20, 30, 40, 60, 80, and 100 mg/L) for 96 h. The Probit software was employed to determine the LC50 (lethal concentration causing 50% fish mortality) by monitoring and documenting fish deaths at 24, 48, 72, and 96-hour intervals. Subsequently, sub-lethal concentrations of 5% LC50 (T1), 10% LC50 (T2), and 15% LC50 (T3) of CuO-NPs were administered based on the LC50 level to investigate their effects on haematological parameters, encompassing the number of red blood cells and white blood cells, hematocrit and haemoglobin levels, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration. Additionally, histopathological examinations were conducted on the gill and liver tissues of the studied fish. Results indicated concentration-response of fish mortalities. In general, changes in the blood biochemical parameters of fish exposed to sub-lethal concentrations of CuO-NPs included a significant decrease in leukocyte count and glucose level and an increase in protein and triglyceride levels. Furthermore, an escalation in tissue damage such as gill apical and basal hyperplasia, lamellae attachment, squamous cell swelling, blood cell infiltration, and cellular oedema in gills tissue. and bleeding, increased sinusoidal space, necrosis, lateralization of the nucleus, cell swelling, and water retention in the liver. The findings showed dose-dependent increasing toxicity in goldfish specimens exposed to CuO-NPs.


Asunto(s)
Cobre , Branquias , Carpa Dorada , Nanopartículas del Metal , Animales , Carpa Dorada/sangre , Cobre/toxicidad , Branquias/efectos de los fármacos , Branquias/patología , Nanopartículas del Metal/toxicidad , Dosificación Letal Mediana , Hígado/efectos de los fármacos , Hígado/patología , Contaminantes Químicos del Agua/toxicidad , Relación Dosis-Respuesta a Droga
16.
Sci Total Environ ; 918: 170568, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38309339

RESUMEN

Among personal care products, quaternium-15 is prominently featured as a preservative in items such as shampoos, soaps, shaving products, and cosmetics. The widespread use of these products in people's daily routines contributes to quaternium-15 release into aquatic ecosystems. In this context, the primary aim of the study was to assess the physiological and cellular responses of the digestive gland and gills in Mytilus galloprovincialis to quaternium-15 exposure. Cell viability and the ability of digestive gland cells to regulate their volume were evaluated. Additionally, the expression of the genes involved in oxidative stress response was assessed to further substantiate the compound's harmful effects. Results indicated a significant decrease in both the viability of digestive gland cells and their RVD (regulatory volume decrease) capacity when exposed to a hypotonic solution. Furthermore, impairment of digestive gland cell function was corroborated by the modulation of oxidative stress-related gene expression, including SOD, Cat, as well as Hsp70 and CYP4Y1. Similar gene expression alterations were observed in the gills, reflecting impaired functionality in this vital organ as well. In summary, the outcomes of the study provide conclusive evidence of the toxicity of quaternium-15. This underscores the urgent need to further investigate the toxicological effects of this contaminant on aquatic ecosystems and emphasises the necessity of limiting the use of products containing quaternium-15.


Asunto(s)
Metenamina/análogos & derivados , Mytilus , Contaminantes Químicos del Agua , Humanos , Animales , Mytilus/fisiología , Ecosistema , Estrés Oxidativo , Digestión , Contaminantes Químicos del Agua/análisis , Branquias/metabolismo , Biomarcadores/metabolismo
17.
J Fish Dis ; 47(5): e13916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38226408

RESUMEN

Nanotechnology is an expanding and new technology that prompts production with nanoparticle-based (1-100 nm) organic and inorganic materials. Such a tool has an imperative function in different sectors like bioengineering, pharmaceuticals, electronics, energy, nuclear energy, and fuel, and its applications are helpful for human, animal, plant, and environmental health. In exacting, the nanoparticles are synthesized by top-down and bottom-up approaches through different techniques such as chemical, physical, and biological progress. The characterization is vital and the confirmation of nanoparticle traits is done by various instrumentation analyses like UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, X-ray diffraction, atomic force microscopy, annular dark-field imaging, and intracranial pressure. In addition, probiotics are friendly microbes which while administered in sufficient quantity confer health advantages to the host. Characterization investigation is much more significant to the identification of good probiotics. Similarly, haemolytic activity, acid and bile salt tolerance, autoaggregation, antimicrobial compound production, inhibition of pathogens, enhance the immune system, and more health-beneficial effects on the host. The synergistic effects of nanoparticles and probiotics combined delivery applications are still limited to food, feed, and biomedical applications. However, the mechanisms by which they interact with the immune system and gut microbiota in humans and animals are largely unclear. This review discusses current research advancements to fulfil research gaps and promote the successful improvement of human and animal health.


Asunto(s)
Antiinfecciosos , Enfermedades de los Peces , Nanopartículas del Metal , Nanopartículas , Drogas Veterinarias , Humanos , Animales , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología
18.
J Contam Hydrol ; 261: 104299, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38237486

RESUMEN

The skeletal muscle is a highly plastic tissue. Its ability to respond to external stimuli and challenges allows it to face the functional needs of the organism. In the goldfish Carassius auratus, a model of hypoxia resistance, exposure to reduced oxygen is accompanied by an improvement of the swimming performance, relying on a sustained contractile behavior of the skeletal muscle. At the moment, limited information is available on the mechanisms underlying these responses. We here evaluated the effects of short- (4 days) and long- (20 days) term exposure to moderate water hypoxia on the goldfish white skeletal muscle, focusing on oxidative status and mitochondrial dynamics. No differences in lipid peroxidation, measured as 2-thiobarbituric acid-reacting substances (TBARS), and oxidatively modified proteins (OMP) were detected in animals exposed to hypoxia with respect to their normoxic counterparts. Exposure to short-term hypoxia was characterized by an enhanced SOD activity and expression, paralleled by increased levels of Nrf2, a regulator of the antioxidant cell response, and HSP70, a chaperone also acting as a redox sensor. The expression of markers of mitochondrial biogenesis (TFAM) and abundance (VDAC) and of the mtDNA/nDNA ratio was similar under normoxia and under both short- and long-term hypoxia, thus excluding a rearrangement of the mitochondrial apparatus. Only an increase of PGC1α (a transcription factor involved in mitochondrial dynamics) was detected after 20 days of hypoxia. Our results revealed novel aspects of the molecular mechanisms that in the goldfish skeletal muscle may sustain the response to hypoxia, thus contributing to adequate tissue function to organism requirements.


Asunto(s)
Carpa Dorada , Dinámicas Mitocondriales , Animales , Carpa Dorada/metabolismo , Músculo Esquelético/metabolismo , Hipoxia/metabolismo , Estrés Oxidativo/fisiología , Oxidación-Reducción
19.
Phytother Res ; 38(3): 1589-1609, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38284138

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease. Through its viral spike (S) protein, the virus enters and infects epithelial cells by utilizing angiotensin-converting enzyme 2 as a host cell's receptor protein. The COVID-19 pandemic had a profound impact on global public health and economies. Although various effective vaccinations and medications are now available to prevent and treat COVID-19, natural compounds derived from medicinal plants, particularly flavonoids, demonstrated therapeutic potential to treat COVID-19 disease. Flavonoids exhibit dual antiviral mechanisms: direct interference with viral invasion and inhibition of replication. Specifically, they target key viral molecules, particularly viral proteases, involved in infection. These compounds showcase significant immunomodulatory and anti-inflammatory properties, effectively inhibiting various inflammatory cytokines. Additionally, emerging evidence supports the potential of flavonoids to mitigate the progression of COVID-19 in individuals with obesity by positively influencing lipid metabolism. This review aims to elucidate the molecular structure of SARS-CoV-2 and the underlying mechanism of action of flavonoids on the virus. This study evaluates the potential anti-SARS-CoV-2 properties exhibited by flavonoid compounds, with a specific interest in their structure and mechanisms of action, as therapeutic applications for the prevention and treatment of COVID-19. Nevertheless, a significant portion of existing knowledge is based on theoretical frameworks and findings derived from in vitro investigations. Further research is required to better assess the effectiveness of flavonoids in combating SARS-CoV-2, with a particular emphasis on in vivo and clinical investigations.


Asunto(s)
COVID-19 , Plantas Medicinales , Humanos , SARS-CoV-2 , Plantas Medicinales/metabolismo , Flavonoides/química , Pandemias , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Peptidil-Dipeptidasa A/metabolismo
20.
Microsc Res Tech ; 87(5): 1092-1110, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251430

RESUMEN

In recent years, the presence of pharmaceuticals and microplastics (MPs) in aquatic ecosystems has raised concerns about their environmental impact. This study explores the combined effects of caffeine, a common pharmaceutical pollutant, and MPs on the marine mussel Mytilus galloprovincialis. Caffeine, at concentrations of 20.0 µg L-1, and MPs (1 mg L-1, 35-50 µm size range), was used to mimic real-world exposure scenarios. Two hundred M. galloprovincialis specimens were divided into four groups: caffeine, MPs, Mix (caffeine + MPs), and Control. After a two-week acclimation period, the mollusks were subjected to these pollutants in oxygen-aerated aquariums under controlled conditions for 14 days. Histopathological assessments were performed to evaluate gill morphology. Cellular volume regulation and digestive gland cell viability were also analyzed. Exposure to caffeine and MPs induced significant morphological changes in M. galloprovincialis gills, including cilia loss, ciliary disk damage, and cellular alterations. The chitinous rod supporting filaments also suffered damage, potentially due to MP interactions, leading to hemocyte infiltration and filament integrity compromise. Hemocytic aggregation suggested an inflammatory response to caffeine. In addition, viability assessments of digestive gland cells revealed potential damage to cell membranes and function, with impaired cell volume regulation, particularly in the Mix group, raising concerns about nutrient metabolism disruption and organ function compromise. These findings underscore the vulnerability of M. galloprovincialis to environmental pollutants and emphasize the need for monitoring and mitigation efforts. RESEARCH HIGHLIGHTS: The synergy of caffeine and microplastics (MPs) in aquatic ecosystems warrants investigation. MPs and caffeine could affect gill morphology of Mytilus galloprovincialis. Caffeine-exposed cells had lower viability than the control group in the NR retention test. MPs and mix-exposed cells struggled to recover their volume.


Asunto(s)
Contaminantes Ambientales , Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus/metabolismo , Microplásticos/toxicidad , Microplásticos/metabolismo , Plásticos/metabolismo , Plásticos/farmacología , Cafeína/toxicidad , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA