Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS One ; 19(5): e0301624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713678

RESUMEN

Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of Typhoid fever. Blood culture is the gold standard for clinical diagnosis, but this is often difficult to employ in resource limited settings. Environmental surveillance of waste-impacted waters is a promising supplement to clinical surveillance, however validating methods is challenging in regions where S. Typhi concentrations are low. To evaluate existing S. Typhi environmental surveillance methods, a novel process control organism (PCO) was created as a biosafe surrogate. Using a previous described qPCR assay, a modified PCR amplicon for the staG gene was cloned into E. coli. We developed a target region that was recognized by the Typhoid primers in addition to a non-coding internal probe sequence. A multiplex qPCR reaction was developed that differentiates between the typhoid and control targets, with no cross-reactivity or inhibition of the two probes. The PCO was shown to mimic S. Typhi in lab-based experiments with concentration methods using primary wastewater: filter cartridge, recirculating Moore swabs, membrane filtration, and differential centrifugation. Across all methods, the PCO seeded at 10 CFU/mL and 100 CFU/mL was detected in 100% of replicates. The PCO is detected at similar quantification cycle (Cq) values across all methods at 10 CFU/mL (Average = 32.4, STDEV = 1.62). The PCO was also seeded into wastewater at collection sites in Vellore (India) and Blantyre (Malawi) where S. Typhi is endemic. All methods tested in both countries were positive for the seeded PCO. The PCO is an effective way to validate performance of environmental surveillance methods targeting S. Typhi in surface water.


Asunto(s)
Monitoreo del Ambiente , Escherichia coli , Salmonella typhi , Salmonella typhi/genética , Salmonella typhi/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Monitoreo del Ambiente/métodos , Aguas Residuales/microbiología , Fiebre Tifoidea/microbiología , Fiebre Tifoidea/epidemiología , Fiebre Tifoidea/diagnóstico , Fiebre Tifoidea/prevención & control , Humanos , Microbiología del Agua
2.
BMJ Open ; 13(3): e067341, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36863743

RESUMEN

INTRODUCTION: Despite clear linkages between provision of clean water and improvements in child health, limited information exists about the health impacts of large water infrastructure improvements in low-income settings. Billions of dollars are spent annually to improve urban water supply, and rigorous evaluation of these improvements, especially targeting informal settlements, is critical to guide policy and investment strategies. Objective measures of infection and exposure to pathogens, and measures of gut function, are needed to understand the effectiveness and impact of water supply improvements. METHODS AND ANALYSIS: In the PAASIM study, we examine the impact of water system improvements on acute and chronic health outcomes in children in a low-income urban area of Beira, Mozambique, comprising 62 sub-neighbourhoods and ~26 300 households. This prospective matched cohort study follows 548 mother-child dyads from late pregnancy through 12 months of age. Primary outcomes include measures of enteric pathogen infections, gut microbiome composition and source drinking water microbiological quality, measured at the child's 12-month visit. Additional outcomes include diarrhoea prevalence, child growth, previous enteric pathogen exposure, child mortality and various measures of water access and quality. Our analyses will compare (1) subjects living in sub-neighbourhoods with the improved water to those living in sub-neighbourhoods without these improvements; and (2) subjects with household water connections on their premises to those without such a connection. This study will provide critical information to understand how to optimise investments for improving child health, filling the information gap about the impact of piped water provision to low-income urban households, using novel gastrointestinal disease outcomes. ETHICS AND DISSEMINATION: This study was approved by the Emory University Institutional Review Board and the National Bio-Ethics Committee for Health in Mozambique. The pre-analysis plan is published on the Open Science Framework platform (https://osf.io/4rkn6/). Results will be shared with relevant stakeholders locally, and through publications.


Asunto(s)
Microbioma Gastrointestinal , Niño , Femenino , Lactante , Humanos , Embarazo , Mozambique , Estudios de Cohortes , Estudios Prospectivos , Abastecimiento de Agua , Comités de Ética en Investigación
3.
PLOS Glob Public Health ; 3(1): e0001074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36962955

RESUMEN

The typhoid conjugate vaccine is a safe and effective method for preventing Salmonella enterica serovar Typhi (typhoid) and the WHO's guidance supports its use in locations with ongoing transmission. However, many countries lack a robust clinical surveillance system, making it challenging to determine where to use the vaccine. Environmental surveillance is one alternative approach to identify ongoing transmission, but the cost to implement such a strategy is previously unknown. This paper estimated the cost of setting up and operating an environmental surveillance program for thirteen protocols that are in development, including thirteen cost components and twenty-seven pieces of equipment. Unit costs were obtained from research labs involved in protocol development and equipment information was obtained from manufacturers and the expert opinion of individuals in participating labs. We used Monte Carlo simulations to estimate the costs and the input parameters were modeled as distributions to incorporate the uncertainty. Total costs per sample including setup, overhead, and operational costs, range from $357-794 at a scale of 25 sites to $116-532 at 125 sites. Operational costs (ongoing expenditures) range from $218-584 per sample at a scale of 25 sites to $74-421 at 125 sites. Eleven of the thirteen protocols have operational costs below $200, at this higher scale. Protocols with higher up-front equipment costs benefit more from scale efficiencies and sensitivity analyses show that laboratory labor, processes, and consumables are the primary drivers of uncertainty. At scale, environmental surveillance for typhoid may be affordable (depending on the protocol, scale, and geographic context), though cost will need to be considered alongside future evaluations of test sensitivity. Opportunities to leverage existing infrastructure and multi-disease platforms may be necessary to further reduce costs.

4.
Viruses ; 13(3)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803454

RESUMEN

Enteric viruses, such as poliovirus, are a leading cause of gastroenteritis, which causes 2-3 million deaths annually. Environmental surveillance of wastewater supplements clinical surveillance for monitoring enteric virus circulation. However, while many environmental surveillance methods require liquid samples, some at-risk locations utilize pit latrines with waste characterized by high solids content. This study's objective was to develop and evaluate enteric virus concentration protocols for high solids content samples. Two existing protocols were modified and tested using poliovirus type 1 (PV1) seeded into primary sludge. Method 1 (M1) utilized acid adsorption, followed by 2 or 3 elutions (glycine/sodium chloride and/or threonine/sodium chloride), and skimmed milk flocculation. Method 2 (M2) began with centrifugation. The liquid fraction was filtered through a ViroCap filter and eluted (beef extract/glycine). The solid fraction was eluted (beef extract/disodium hydrogen phosphate/citric acid) and concentrated by skimmed milk flocculation. Recovery was enumerated by plaque assay. M1 yielded higher PV1 recovery than M2, though this result was not statistically significant (26.1% and 15.9%, respectively). M1 was further optimized, resulting in significantly greater PV1 recovery when compared to the original protocol (p < 0.05). This method can be used to improve understanding of enteric virus presence in communities without liquid waste streams.


Asunto(s)
Monitoreo del Ambiente/métodos , Poliovirus/aislamiento & purificación , Aguas del Alcantarillado/virología , Residuos Sólidos/análisis , Carga Viral/métodos , Infecciones por Enterovirus/prevención & control , Floculación , Gastroenteritis/prevención & control , Gastroenteritis/virología , Humanos , Poliomielitis/prevención & control , Ensayo de Placa Viral/métodos , Microbiología del Agua
5.
Food Environ Virol ; 12(1): 35-47, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31679104

RESUMEN

The bag-mediated filtration system (BMFS) was developed to facilitate poliovirus (PV) environmental surveillance, a supplement to acute flaccid paralysis surveillance in PV eradication efforts. From April to September 2015, environmental samples were collected from four sites in Nairobi, Kenya, and processed using two collection/concentration methodologies: BMFS (> 3 L filtered) and grab sample (1 L collected; 0.5 L concentrated) with two-phase separation. BMFS and two-phase samples were analyzed for PV by the standard World Health Organization poliovirus isolation algorithm followed by intratypic differentiation. BMFS samples were also analyzed by a cell culture independent real-time reverse transcription polymerase chain reaction (rRT-PCR) and an alternative cell culture method (integrated cell culture-rRT-PCR with PLC/PRF/5, L20B, and BGM cell lines). Sabin polioviruses were detected in a majority of samples using BMFS (37/42) and two-phase separation (32/42). There was statistically more frequent detection of Sabin-like PV type 3 in samples concentrated with BMFS (22/42) than by two-phase separation (14/42, p = 0.035), possibly due to greater effective volume assayed (870 mL vs. 150 mL). Despite this effective volume assayed, there was no statistical difference in Sabin-like PV type 1 and Sabin-like PV type 2 detection between these methods (9/42 vs. 8/42, p = 0.80 and 27/42 vs. 32/42, p = 0.18, respectively). This study demonstrated that BMFS can be used for PV environmental surveillance and established a feasible study design for future research.


Asunto(s)
Monitoreo del Ambiente/métodos , Filtración/métodos , Agua Dulce/virología , Poliovirus/aislamiento & purificación , Monitoreo del Ambiente/instrumentación , Estudios de Factibilidad , Filtración/instrumentación , Agua Dulce/química , Humanos , Kenia , Poliomielitis/virología , Poliovirus/clasificación , Poliovirus/genética
6.
Food Environ Virol ; 11(1): 20-31, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30612304

RESUMEN

Effective surveillance of human enteric viruses is critical to estimate disease prevalence within a community and can be a vital supplement to clinical surveillance. This study sought to evaluate simple, effective, and inexpensive secondary concentration methods for use with ViroCap™ filter eluate for environmental surveillance of poliovirus. Wastewater was primary concentrated using cartridge ViroCap filters, seeded with poliovirus type 1 (PV1), and then concentrated using five secondary concentration methods (beef extract-Celite, ViroCap flat disc filter, InnovaPrep® Concentrating Pipette, polyethylene glycol [PEG]/sodium chloride [NaCl] precipitation, and skimmed-milk flocculation). PV1 was enumerated in secondary concentrates by plaque assay on BGMK cells. Of the five tested methods, PEG/NaCl precipitation and skimmed-milk flocculation resulted in the highest PV1 recoveries. Optimization of the skimmed-milk flocculation method resulted in a greater PV1 recovery (106 ± 24.8%) when compared to PEG/NaCl precipitation (59.5 ± 19.4%) (p = 0.004, t-test). The high PV1 recovery, short processing time, low reagent cost, no required refrigeration, and requirement for only standard laboratory equipment suggest that the skimmed-milk flocculation method would be a good candidate to be field-validated for secondary concentration of environmental ViroCap filter samples containing poliovirus.


Asunto(s)
Monitoreo del Ambiente/métodos , Poliovirus/aislamiento & purificación , Aguas del Alcantarillado/virología , Virología/métodos , Microbiología del Agua , Floculación
7.
Water Sci Technol Water Supply ; 19(6): 1668-1676, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33584163

RESUMEN

Enteric virus environmental surveillance via a highly sensitive method is critical, as many enteric viruses have low infectious doses and can persist in the environment for extended periods. This study determined the potential of the novel bag-mediated filtration system (BMFS) to recover human enteric viruses and pepper mild mottle virus (PMMoV) from wastewater and wastewater-impacted surface waters, examined PMMoV use as a fecal contamination indicator in Kenya, and identified potential BMFS process controls. From April 2015 to April 2016, BMFS samples were collected from seven sites in Kenya (n = 59). Enteroviruses and PMMoV were detected in 100% of samples, and human adenovirus, human astrovirus, hepatitis A virus, norovirus GI, norovirus GII, sapovirus, and human rotavirus were detected in the majority of samples. The consistent detection of enteroviruses and PMMoV suggests that these viruses could be used as indicators in similarly fecally contaminated sites and BMFS process controls. As contamination of surface water sources remains a global issue, enteric virus environmental surveillance is necessary. This study demonstrates an effective way to sample large volumes of wastewater and wastewater-impacted surface waters for the detection of multiple enteric viruses simultaneously.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA