Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 299(5): 104636, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963489

RESUMEN

Base excision repair (BER) is carried out by a series of proteins that function in a step-by-step process to identify, remove, and replace DNA damage. During BER, the DNA transitions through various intermediate states as it is processed by each DNA repair enzyme. Left unrepaired, these BER intermediates can transition into double-stranded DNA breaks and promote genome instability. Previous studies have proposed a short-lived complex consisting of the BER intermediate, the incoming enzyme, and the outgoing enzyme at each step of the BER pathway to protect the BER intermediate. The transfer of BER intermediates between enzymes, known as BER coordination or substrate channeling, remains poorly understood. Here, we utilize single-molecule total internal reflection fluorescence microscopy to investigate the mechanism of BER coordination between apurinic/apyrimidinic endonuclease 1 (APE1) and DNA polymerase ß (Pol ß). When preformed complexes of APE1 and the incised abasic site product (APE1 product and Pol ß substrate) were subsequently bound by Pol ß, the Pol ß enzyme dissociated shortly after binding in most of the observations. In the events where Pol ß binding was followed by APE1 dissociation during substrate channeling, Pol ß remained bound for a longer period of time to allow disassociation of APE1. Our results indicate that transfer of the BER intermediate from APE1 to Pol ß during BER is dependent on the dissociation kinetics of APE1 and the duration of the ternary complex on the incised abasic site.


Asunto(s)
ADN Polimerasa beta , Reparación del ADN , Daño del ADN , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Reparación del ADN/fisiología , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Imagen Individual de Molécula , Microscopía Fluorescente , Humanos
2.
Biology (Basel) ; 10(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201434

RESUMEN

Single-molecule total internal reflection fluorescence (TIRF) microscopy allows for the real-time visualization of macromolecular dynamics and complex assembly. Prism-based TIRF microscopes (prismTIRF) are relatively simple to operate and can be easily modulated to fit the needs of a wide variety of experimental applications. While building a prismTIRF microscope without expert assistance can pose a significant challenge, the components needed to build a prismTIRF microscope are relatively affordable and, with some guidance, the assembly can be completed by a determined novice. Here, we provide an easy-to-follow guide for the design, assembly, and operation of a three-color prismTIRF microscope which can be utilized for the study of macromolecular complexes, including the multi-component protein-DNA complexes responsible for DNA repair, replication, and transcription. Our hope is that this article can assist laboratories that aspire to implement single-molecule TIRF techniques, and consequently expand the application of this technology.

3.
Protein Sci ; 29(4): 1018-1034, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31943488

RESUMEN

Every method used to quantify biomolecular interactions has its own strengths and limitations. To quantify protein-DNA binding affinities, nitrocellulose filter binding assays with 32 P-labeled DNA quantify Kd values from 10-12 to 10-8 M but have several technical limitations. Here, we considered the suitability of biolayer interferometry (BLI), which monitors association and dissociation of a soluble macromolecule to an immobilized species; the ratio koff /kon determines Kd . However, for lactose repressor protein (LacI) and an engineered repressor protein ("LLhF") binding immobilized DNA, complicated kinetic curves precluded this analysis. Thus, we determined whether the amplitude of the BLI signal at equilibrium related linearly to the fraction of protein bound to DNA. A key question was the effective concentration of immobilized DNA. Equilibrium titration experiments with DNA concentrations below Kd (equilibrium binding regime) must be analyzed differently than those with DNA near or above Kd (stoichiometric binding regime). For ForteBio streptavidin tips, the most frequent effective DNA concentration was ~2 × 10-9 M. Although variation occurred among different lots of sensor tips, binding events with Kd ≥ 10-8 M should reliably be in the equilibrium binding regime. We also observed effects from multi-valent interactions: Tetrameric LacI bound two immobilized DNAs whereas dimeric LLhF did not. We next used BLI to quantify the amount of inducer sugars required to allosterically diminish protein-DNA binding and to assess the affinity of fructose-1-kinase for the DNA-LLhF complex. Overall, when experimental design corresponded with appropriate data interpretation, BLI was convenient and reliable for monitoring equilibrium titrations and thereby quantifying a variety of binding interactions.


Asunto(s)
ADN/química , Proteínas/química , ADN/metabolismo , Interferometría , Luz , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Proteínas/metabolismo , Volumetría
4.
Cell Mol Life Sci ; 77(1): 35-59, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31722068

RESUMEN

DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Dominio Catalítico , Reparación del ADN , Replicación del ADN , Humanos , Modelos Moleculares , Conformación Proteica
5.
Acta Crystallogr D Struct Biol ; 74(Pt 8): 760-768, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30082511

RESUMEN

Despite the DNA duplex being central to biological functions, many intricacies of this molecule, including the dynamic nature of mismatched base pairing, are still unknown. The unique conformations adopted by DNA mismatches can provide insight into the forces at play between nucleotides. Moreover, DNA-binding proteins apply their own individualized steric and electrochemical influences on the nucleotides that they interact with, further altering base-pairing conformations. Here, seven X-ray crystallographic structures of the human nuclease apurinic/apyrimidinic (AP) endonuclease 1 (APE1) in complex with its substrate target flanked by a 5' mismatch are reported. The structures reveal how APE1 influences the conformations of a variety of different mismatched base pairs. Purine-purine mismatches containing a guanine are stabilized by a rotation of the guanine residue about the N-glycosidic bond to utilize the Hoogsteen edge for hydrogen bonding. Interestingly, no rotation of adenine, the other purine, is observed. Mismatches involving both purine and pyrimidine bases adopt wobble conformations to accommodate the mismatch. Pyrimidine-pyrimidine mismatches also wobble; however, the smaller profile of a pyrimidine base results in a gap between the Watson-Crick faces that is reduced by a C1'-C1' compression. These results advance our understanding of mismatched base pairing and the influence of a bound protein.


Asunto(s)
Disparidad de Par Base , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN/química , Emparejamiento Base , Sitios de Unión , Cristalografía por Rayos X , ADN/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Especificidad por Sustrato
6.
Nucleic Acids Res ; 45(16): 9514-9527, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934484

RESUMEN

The Human antigen R protein (HuR) is an RNA-binding protein that recognizes U/AU-rich elements in diverse RNAs through two RNA-recognition motifs, RRM1 and RRM2, and post-transcriptionally regulates the fate of target RNAs. The natural product dihydrotanshinone-I (DHTS) prevents the association of HuR and target RNAs in vitro and in cultured cells by interfering with the binding of HuR to RNA. Here, we report the structural determinants of the interaction between DHTS and HuR and the impact of DHTS on HuR binding to target mRNAs transcriptome-wide. NMR titration and Molecular Dynamics simulation identified the residues within RRM1 and RRM2 responsible for the interaction between DHTS and HuR. RNA Electromobility Shifts and Alpha Screen Assays showed that DHTS interacts with HuR through the same binding regions as target RNAs, stabilizing HuR in a locked conformation that hampers RNA binding competitively. HuR ribonucleoprotein immunoprecipitation followed by microarray (RIP-chip) analysis showed that DHTS treatment of HeLa cells paradoxically enriched HuR binding to mRNAs with longer 3'UTR and with higher density of U/AU-rich elements, suggesting that DHTS inhibits the association of HuR to weaker target mRNAs. In vivo, DHTS potently inhibited xenograft tumor growth in a HuR-dependent model without systemic toxicity.


Asunto(s)
Proteína 1 Similar a ELAV/química , Fenantrenos/química , Fenantrenos/farmacología , Regiones no Traducidas 3' , Elementos Ricos en Adenilato y Uridilato , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Proteína 1 Similar a ELAV/antagonistas & inhibidores , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Furanos , Humanos , Espectroscopía de Resonancia Magnética , Ratones Mutantes Neurológicos , Simulación de Dinámica Molecular , Fenantrenos/metabolismo , Mutación Puntual , Conformación Proteica , Dominios Proteicos , Quinonas , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA