Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125360

RESUMEN

Withania somnifera, commonly known as Ashwagandha, has been popular for many years. Numerous studies have shown that the extract of this plant, due to its wealth of active substances, can induce anti-inflammatory, neuroprotective, immunomodulatory, hepatoprotective, cardioprotective, anti-diabetic, adaptogenic, anti-arthritic, anti-stress, and antimicrobial effects. This review examines the impact of Ashwagandha extract on the vascular endothelium, inflammation, lipid metabolism, and cardiovascular outcomes. Studies have shown that Ashwagandha extracts exhibit an anti-angiogenic effect by inhibiting vascular endothelial growth factor (VEGF)-induced capillary sprouting and formation by lowering the mean density of microvessels. Furthermore, the results of numerous studies highlight the anti-inflammatory role of Ashwagandha extract, as the action of this plant causes a decrease in the expression of pro-inflammatory cytokines. Interestingly, withanolides, present in Ashwagandha root, have shown the ability to inhibit the differentiation of preadipocytes into adipocytes. Research results have also proved that W. somnifera demonstrates cardioprotective effects due to its antioxidant properties and reduces ischemia/reperfusion-induced apoptosis. It seems that this plant can be successfully used as a potential treatment for several conditions, mainly those with increased inflammation. More research is needed to elucidate the exact mechanisms by which the substances contained in W. somnifera extracts can act in the human body.


Asunto(s)
Antiinflamatorios , Enfermedades Cardiovasculares , Endotelio Vascular , Inflamación , Metabolismo de los Lípidos , Extractos Vegetales , Withania , Humanos , Extractos Vegetales/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Antiinflamatorios/farmacología , Withania/química , Enfermedades Cardiovasculares/tratamiento farmacológico , Animales , Antioxidantes/farmacología
2.
Cancers (Basel) ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610995

RESUMEN

Centella asiatica has been recognized for centuries in Eastern medicine for its pharmacological properties. Due to the increasing prevalence of oncological diseases worldwide, natural substances that could qualify as anticancer therapeutics are becoming increasingly important subjects of research. This review aims to find an innovative use for asiatic acid (AA) in the treatment or support of cancer therapy. It has been demonstrated that AA takes part in inhibiting phosphorylation, inducing cell death, and reducing tumor growth and metastasis by influencing important signaling pathways, such as PI3K, Akt, mTOR, p70S6K, and STAT3, in cancer cells. It is also worth mentioning the high importance of asiatic acid in reducing the expression of markers such as N-cadherin, ß-catenin, claudin-1, and vimentin. Some studies have indicated the potential of asiatic acid to induce autophagy in cancer cells through changes in the levels of specific proteins such as LC3 and p62. It can also act as an anti-tumor immunotherapeutic agent, thanks to its inductive effect on Smad7 in combination with naringenin (an Smad3 inhibitor). It seems that asiatic acid may be a potential anticancer drug or form of adjunctive therapy. Further studies should take into account safety and toxicity issues, as well as limitations related to the pharmacokinetics of AA and its low oral bioavailability.

3.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003702

RESUMEN

Withania somnifera, also known as Ashwagandha, has been used in traditional medicine for thousands of years. Due to the wide range of its activities, there has been interest in its possible beneficial effects on the human body. It is proved that, among others, Ashwagandha has anti-stress, anti-inflammatory, antimicrobial, anti-cancer, anti-diabetic, anti-obesity, cardioprotective, and hypolipidemic properties. Particularly interesting are its properties reported in the field of psychiatry and neurology: in Alzheimer's disease, Parkinson's disease, multiple sclerosis, depression, bipolar disorder, insomnia, anxiety disorders and many others. The aim of this review is to find and summarize the effect that Ashwagandha root extract has on the endocrine system and hormones. The multitude of active substances and the wide hormonal problems faced by modern society sparked our interest in the topic of Ashwagandha's impact on this system. In this work, we also attempted to draw conclusions as to whether W. somnifera can help normalize the functions of the human endocrine system in the future. The search mainly included research published in the years 2010-2023. The results of the research show that Ashwagandha can have a positive effect on the functioning of the endocrine system, including improving the secretory function of the thyroid gland, normalizing adrenal activity, and multidirectional improvement on functioning of the reproductive system. The main mechanism of action in the latter appears to be based on the hypothalamus-pituitary-adrenal (HPA) axis, as a decrease in cortisol levels and an increase in hormones such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in men were found, which results in stress level reduction and improvement in fertility. In turn, other studies prove that active substances from W. somnifera, acting on the body, cause an increase in the secretion of triiodothyronine (T3) and thyroxine (T4) by the thyroid gland and a subsequent decrease in the level of thyroid-stimulating hormone (TSH) in accordance with the hypothalamus-pituitary-thyroid (HPT) axis. In light of these findings, it is clear that Ashwagandha holds significant promise as a natural remedy for various health concerns, especially those related to the endocrine system. Future research may provide new insights into its mechanisms of action and expand its applications in both traditional and modern medicine. The safety and toxicity of Ashwagandha also remain important issues, which may affect its potential use in specific patient groups.


Asunto(s)
Withania , Masculino , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Glándula Tiroides , Hormona Luteinizante
4.
Cancers (Basel) ; 15(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37627116

RESUMEN

Melanoma is a type of skin cancer in which there is a strong correlation between its occurrence and exposure to ultraviolet radiation. Although it is not the most common skin cancer, it has the highest mortality rate of all skin cancers. The prognosis of patients is significantly worsened by melanoma metastasis to the brain, which often occurs in patients with advanced disease. The formation and development of melanoma metastases to the brain involve a very complex process, and their mechanisms are not fully understood. One of the ways for metastatic melanoma cells to survive and develop cancer in the brain environment is the presence of oncogenic BRAF mutation, which occurs in up to 50% of metastatic melanoma cases. Before discovering new methods of treating metastases, the overall survival of patients with this disease was 6 months. Currently, research is being conducted on new drugs using immunotherapy (immune checkpoint inhibitors: anti-PD-1, anti-CTLA-4) and targeted therapy (BRAF and MEK inhibitors) to improve the prognosis of patients. In this article, we summarize the current state of knowledge about the results of treating brain metastases with new systemic therapies.

5.
J Clin Med ; 12(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37510734

RESUMEN

Cannabis-derived therapies are gaining popularity in the medical world. More and more perfect forms of cannabinoids are sought, which could be used in the treatment of many common diseases, including metabolic syndrome, whose occurrence is also increasing. The purpose of this review was to investigate the usefulness of cannabinoids, mainly cannabidiol (CBD), in individuals with obesity, impaired glucose and lipid metabolism, high blood pressure, and non-alcoholic fatty liver disease (NAFLD). We summarised the most recent research on the broad topic of cannabis-derived influence on metabolic syndrome components. Since there is a lot of work on the effects of Δ9-THC (Δ9-tetrahydrocannabinol) on metabolism and far less on cannabidiol, we felt it needed to be sorted out and summarised in this review. The research results on the use of cannabidiol in obesity are contraindicatory. When it comes to glucose homeostasis, it appears that CBD maintains it, sensitises adipose tissue to insulin, and reduces fasting glucose levels, so it seems to be a potential target in this kind of metabolic disorder, but some research results are inconclusive. CBD shows some promising results in the treatment of various lipid disorders. Some studies have proven its positive effect by decreasing LDL and increasing HDL as well. Despite their probable efficacy, CBD and its derivatives will likely remain an adjunctive treatment rather than a mainstay of therapy. Studies have also shown that CBD in patients with hypertension has positive effects, even though the hypotensive properties of cannabidiol are small. However, CBD can be used to prevent blood pressure surges, stabilise them, and have a protective effect on blood vessels. Results from preclinical studies have shown that the effect of cannabidiol on NAFLD may be potentially beneficial in the treatment of the metabolic syndrome and its components. Nevertheless, there is limited data on CBD and NAFLD in human studies. Because of the numerous confounding factors, the conclusions are unclear, and more research in this field is required.

6.
Biology (Basel) ; 12(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37106732

RESUMEN

The benefits of physical activity and sports are widely known and proved to be crucial for overall health and well-being. In this research, the authors decided to measure the impact of endurance training in a professional male rowing team on the serum concentration levels of testosterone, estradiol, sex hormone binding globulin (SHBG) and nitric oxide (NO) and apolipoprotein A1 (Apo-A1). Proper levels of the serum concentration are necessary in order to maintain physical effectiveness. Authors analyzed the data and reviewed the former conterminous articles to find the possible mechanisms leading to changes of serum concentration of certain hormones and molecules. The direct effect of physical activity was a decrease in testosterone serum concentration (from 7.12 ± 0.4 to 6.59 ± 0.35 (ng/mL)), sex hormone binding globulin serum concentration (from 39.50 ± 2.48 to 34.27 ± 2.33 (nmol/L)), nitric oxide serum concentration (from 440.21 ± 88.64 to 432 ± 91.89 (ng/mL)), increase in estradiol serum concentration (from 78.2 ± 11.21 to 83.01 ± 13.21 (pg/mL)) and no significant increase in Apo-A1 serum concentration (from 2.63 ± 0.2 to 2.69 ± 0.21 (mg/mL)). Low testosterone concentration in OTS may be a consequence of increased conversion to estradiol, because gonadotropic stimulation is maintained. Apo-A1 serum concentration was measured due to a strong connection with testosterone level and its possible impact of decreasing cardiovascular risk.

7.
Nutr Metab (Lond) ; 19(1): 31, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488267

RESUMEN

BACKGROUND: Vitamin D deficiency is one of the most common health issues in developed countries. Obese patients are most at risk of having serum 25-hydroxyvitamin D3 (25(OH)D3) levels that are too low due to the accumulation of vitamin D in adipose tissue. While the effects of a deficiency on the skeletal or immune system are known, the effects on the cardiovascular system are not yet clear. Our study investigates the effect of cholecalciferol supplementation in obese patients on selected biomarkers associated with cardiovascular diseases (CVDs). METHODS: The study enrolled 33 obese patients with insufficient 25(OH)D3 levels. For three months, the subjects supplemented with cholecalciferol at a dose of 2000 IU/day. Concentrations of nitric oxide (NO), vascular endothelial growth factor A (VEGF-A), leptin, trimethylamine N-oxide (TMAO) and soluble suppression of tumorigenicity 2 (sST2) were measured in baseline samples using ELISA (BioTek EPOCH). 25(OH)D3 levels measured on Beckman Coulter DXI 800 by chemiluminescence method. RESULTS: After supplementation, 25(OH)D3 levels increased significantly. Normal levels were achieved in most patients. A statistically significant reduction leptin and TMAO levels was observed. At the same time, NO and VEGF-A levels increased statistically significantly. CONCLUSION: This study indicates that restoring normal 25(OH)D3 levels in obese people reduces the concentration of pro-inflammatory factors associated with cardiovascular diseases. Reducing inflammation and the potential impact on vascular reactivity leads to the conclusion that cholecalciferol supplementation in obese patients may benefit the cardiovascular system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA