Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 13(1): 228-241, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31892954

RESUMEN

Sequencing technologies and bioinformatic approaches are now available to resolve the challenges associated with complex and heterozygous genomes. Increased access to less expensive and more effective instrumentation will contribute to a wealth of high-quality plant genomes in the next few years. In the meantime, more than 370 tree species are associated with public projects in primary repositories that are interrogating expression profiles, identifying variants, or analyzing targeted capture without a high-quality reference genome. Genomic data from these projects generates sequences that represent intermediate assemblies for transcriptomes and genomes. These data contribute to forest tree biology, but the associated sequence remains trapped in supplemental files that are poorly integrated in plant community databases and comparative genomic platforms. Successful implementation of life science cyberinfrastructure is improving data standards, ontologies, analytic workflows, and integrated database platforms for both model and non-model plant species. Unique to forest trees with large populations that are long-lived, outcrossing, and genetically diverse, the phenotypic and environmental metrics associated with georeferenced populations are just as important as the genomic data sampled for each individual. To address questions related to forest health and productivity, cyberinfrastructure must keep pace with the magnitude of genomic and phenomic sampling of larger populations. This review examines the current landscape of cyberinfrastructure, with an emphasis on best practices and resources to align community data with the Findable, Accessible, Interoperable, and Reusable (FAIR) guidelines.

2.
Plant J ; 102(2): 410-423, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31823432

RESUMEN

Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae), represents most of the family's commercially valuable fruit and wood-producing trees. It includes several species used as rootstock for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multi-exonic and mono-exonic putative genes to yield between 27 000 and 44 000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 85.6%. We utilized these high-quality annotations to assess gene family evolution within Juglans, and among Juglans and selected Eurosid species. We found notable contractions in several gene families in J. hindsii, including disease resistance-related wall-associated kinase (WAK), Catharanthus roseus receptor-like kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole-genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.


Asunto(s)
Genoma de Planta/genética , Genómica , Juglans/genética , Transcriptoma , Resistencia a la Enfermedad/genética , Juglans/fisiología , Estrés Fisiológico
3.
Front Plant Sci ; 10: 813, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293610

RESUMEN

Despite tremendous advancements in high throughput sequencing, the vast majority of tree genomes, and in particular, forest trees, remain elusive. Although primary databases store genetic resources for just over 2,000 forest tree species, these are largely focused on sequence storage, basic genome assemblies, and functional assignment through existing pipelines. The tree databases reviewed here serve as secondary repositories for community data. They vary in their focal species, the data they curate, and the analytics provided, but they are united in moving toward a goal of centralizing both data access and analysis. They provide frameworks to view and update annotations for complex genomes, interrogate systems level expression profiles, curate data for comparative genomics, and perform real-time analysis with genotype and phenotype data. The organism databases of today are no longer simply catalogs or containers of genetic information. These repositories represent integrated cyberinfrastructure that support cross-site queries and analysis in web-based environments. These resources are striving to integrate across diverse experimental designs, sequence types, and related measures through ontologies, community standards, and web services. Efficient, simple, and robust platforms that enhance the data generated by the research community, contribute to improving forest health and productivity.

5.
Database (Oxford) ; 2018: 1-11, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239664

RESUMEN

Forest trees are valued sources of pulp, timber and biofuels, and serve a role in carbon sequestration, biodiversity maintenance and watershed stability. Examining the relationships among genetic, phenotypic and environmental factors for these species provides insight on the areas of concern for breeders and researchers alike. The TreeGenes database is a web-based repository that is home to 1790 tree species and over 1500 registered users. The database provides a curated archive for high-throughput genomics, including reference genomes, transcriptomes, genetic maps and variant data. These resources are paired with extensive phenotypic information and environmental layers. TreeGenes recently migrated to Tripal, an integrated and open-source database schema and content management system. This migration enabled developments focused on data exchange, data transfer and improved analytical capacity, as well as providing TreeGenes the opportunity to communicate with the following partner databases: Hardwood Genomics Web, Genome Database for Rosaceae, and the Citrus Genome Database. Recent development in TreeGenes has focused on coordinating information for georeferenced accessions, including metadata acquisition and ontological frameworks, to improve integration across studies combining genetic, phenotypic and environmental data. This focus was paired with the development of tools to enable comparative genomics and data visualization. By combining advanced data importers, relevant metadata standards and integrated analytical frameworks, TreeGenes provides a platform for researchers to store, submit and analyze forest tree data.


Asunto(s)
Bases de Datos Genéticas , Bosques , Genómica , Minería de Datos , Ontología de Genes , Fenotipo , Filogenia , Motor de Búsqueda , Programas Informáticos , Árboles/genética , Árboles/crecimiento & desarrollo
6.
G3 (Bethesda) ; 8(5): 1461-1474, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29559535

RESUMEN

Conifers are the dominant plant species throughout the high latitude boreal forests as well as some lower latitude temperate forests of North America, Europe, and Asia. As such, they play an integral economic and ecological role across much of the world. This study focused on the characterization of needle transcriptomes from four ecologically important and understudied North American white pines within the Pinus subgenus Strobus The populations of many Strobus species are challenged by native and introduced pathogens, native insects, and abiotic factors. RNA from the needles of western white pine (Pinus monticola), limber pine (Pinus flexilis), whitebark pine (Pinus albicaulis), and sugar pine (Pinus lambertiana) was sampled, Illumina short read sequenced, and de novo assembled. The assembled transcripts and their subsequent structural and functional annotations were processed through custom pipelines to contend with the challenges of non-model organism transcriptome validation. Orthologous gene family analysis of over 58,000 translated transcripts, implemented through Tribe-MCL, estimated the shared and unique gene space among the four species. This revealed 2025 conserved gene families, of which 408 were aligned to estimate levels of divergence and reveal patterns of selection. Specific candidate genes previously associated with drought tolerance and white pine blister rust resistance in conifers were investigated.


Asunto(s)
Pinus/genética , Transcriptoma/genética , Secuencia de Aminoácidos , Secuencia Conservada/genética , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Genoma de Planta , Geografía , Anotación de Secuencia Molecular , Familia de Multigenes , América del Norte , Proteínas de Plantas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Selección Genética , Análisis de Secuencia de ARN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA