Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Foods ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731667

RESUMEN

3-Methylthio-1-propanol (3-Met) is an important flavor compound in various alcoholic beverages such as Baijiu and Huangjiu. To maintain the content of 3-Met in these alcoholic beverages, it is necessary to screen a micro-organism with high yield of 3-Met from the brewing environment. In this study, the ability of yeast strains from the Baijiu brewing to produce 3-Met was analyzed, aiming to obtain yeast with high-yield 3-Met, and its fermentation conditions were optimized. Firstly, 39 yeast strains were screened using 3-Met conversion medium. The results showed that the majority of the strains from Baijiu brewing sources could produce 3-Met, and nearly half of the strains produced more than 0.5 g/L of 3-Met. Among these, yeast F10404, Y03401, and Y8#01, produced more than 1.0 g/L of 3-Met, with yeast Y03401 producing the highest amount at 1.30 g/L. Through morphological observation, physiological and biochemical analysis, and molecular biological identification, it was confirmed that yeast Y03401 was a Saccharomyces cerevisiae. Subsequently, the optimal fermentation conditions for 3-Met production by this yeast were obtained through single-factor designs, Plackett-Burman test, steepest ascent path design and response surface methodology. When the glucose concentration was 60 g/L, yeast extract concentration was 0.8 g/L, L-methionine concentration was 3.8 g/L, initial pH was 4, incubation time was 63 h, inoculum size was 1.6%, shaking speed was 150 rpm, loading volume was 50 mL/250 mL, and temperature was 26 °C, the content of 3-Met produced by S. cerevisiae Y03401 reached a high level of 3.66 g/L. It was also noteworthy that, in contrast to other study findings, this yeast was able to create substantial amounts of 3-Met even in the absence of L-methionine precursor. Based on the clear genome of S. cerevisiae and its characteristics in 3-Met production, S. cerevisiae Y03401 had broad prospects for application in alcoholic beverages such as Baijiu.

2.
Foods ; 13(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38790845

RESUMEN

Saccharomycopsis fibuligera, which produces enzymes like amylase and protease as well as flavor substances like ß-phenyl ethanol and phenyl acetate, plays a crucial role in traditional fermented foods. However, this strain still lacks a high-density fermentation culture, which has had an impact on the strain's industrial application process. Therefore, this study investigated the optimization of medium ingredients and fermentation conditions for high-density fermentation of S. fibuligera Y1402 through single-factor design, Plackett-Burman design, steepest ascent test, and response surface analysis. The study found that glucose at 360.61 g/L, peptone at 50 g/L, yeast extract at 14.65 g/L, KH2PO4 at 5.49 g/L, MgSO4 at 0.40 g/L, and CuSO4 at 0.01 g/L were the best medium ingredients for S. fibuligera Y1402. Under these conditions, after three days of fermentation, the total colony count reached 1.79 × 108 CFU/mL. The optimal fermentation conditions were determined to be an initial pH of 6.0, an inoculum size of 1.10%, a liquid volume of 12.5 mL/250 mL, a rotation speed of 120 r/min, a fermentation temperature of 21 °C and a fermentation time of 53.50 h. When fermentation was conducted using the optimized medium and conditions, the total colony count achieved a remarkable value of 5.50 × 109 CFU/mL, exhibiting a substantial increase of nearly 31 times the original value in the optimal culture medium. This significant advancement offers valuable insights and a reference for the industrial-scale production of S. fibuligera.

3.
Biochem Biophys Res Commun ; 717: 149978, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718564

RESUMEN

Caspase-1 is one of the main mediators of inflammatory caspases and has become a correspondent with inflammation, cell death, and several inflammatory diseases. In this review, we systematically summarize both original and recent advances in caspase-1 to provide references for a better understanding of the molecular mechanisms in its activation and functions. This study investigates and summarizes the published articles concerning caspase-1, inflammation, pyroptosis, apoptosis, and cell death by searching academic search systems, including the PubMed, Web of Science, and Google Scholar. Caspase-1 is one of the main mediators of inflammatory caspases and has become a correspondent with inflammation and cell death. In cell death, caspase-1 was originally found to cause apoptosis in fibroblasts. Importantly, caspase-1 was later reported to execute programmed cell death, including pyroptosis and apoptosis, in many immune cells in response to diverse stimuli. It is widely established that different pathways can activate caspase-1 and subsequently mediate cell death and inflammation. It has become increasingly clear that caspase-1 is responsible for the initiation and control of pyroptosis, apoptosis, and inflammation in addition to its well-known function in cleaving IL-1ß. The significant advancement in the understanding of caspase-1-controlled cell death and novel substrates inspires new therapeutic approaches in the future.


Asunto(s)
Apoptosis , Caspasa 1 , Piroptosis , Caspasa 1/metabolismo , Humanos , Animales , Activación Enzimática , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal
4.
Int J Biol Macromol ; 270(Pt 1): 132312, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744370

RESUMEN

This study aimed to immobilize ß-galactosidase (ß-GAL) into enhanced polystyrene (PS) electrospun nanofiber membranes (ENMs) with functionalized graphene oxide (GO). Initially, GO sheets were functionalized by salinization with 3-aminopropyl triethoxysilane (APTES). Then the ENMs (PS, PS/GO, and PS/GO-APTES) were prepared and characterized. Then, the ß-GAL was immobilized in the different ENMs to produce the ß-GAL-bound nanocomposites (PS-GAL, PS/GO-GAL, and PS/GO-APTES-GAL). Immobilization of ß-GAL into PS/GO-APTES significantly improved enzyme adsorption by up to 87 %. Also, PS/GO-APTES-GAL improved the enzyme activity, where the highest enzyme activity was obtained at enzyme concentrations of 4 mg/L, 50 °C, and pH 4.5. Likewise, the storage stability and reusability of immobilized ß-GAL were improved. Furthermore, this process led to enhanced catalytic behavior and transgalactosylation efficiency, where GOS synthesis (72 %) and lactose conversion (81 %) increased significantly compared to the free enzyme. Overall, the immobilized ß-GAL produced in this study showed potential as an effective biocatalyst in the food industry.


Asunto(s)
Enzimas Inmovilizadas , Grafito , Nanofibras , Oligosacáridos , beta-Galactosidasa , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Nanofibras/química , Grafito/química , Oligosacáridos/química , Galactosa/química , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Silanos/química , Biocatálisis , Poliestirenos/química , Temperatura , Catálisis
5.
Int J Biol Macromol ; 267(Pt 1): 131196, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574915

RESUMEN

In this study, high internal phase Pickering emulsions (HIPPEs) were stabilized by the complexes of peanut protein isolate (PPI) and cellulose nanocrystals (CNCs) for encapsulation ß-carotene to retard its degradation during processing and storage. CNCs were prepared by H2SO4 hydrolysis (HCNCs), APS oxidation (ACNCs) and TEMPO oxidation (TCNCs), exhibiting needle-like or rod-like structures with nanoscale size and uniformly distributed around the spherical PPI particle, which enhanced the emulsifying capability of PPI. Results of optical micrographs and droplet size measurement showed that Pickering emulsions stabilized by PPI/ACNCs complexes exhibited the most excellent stability after 30 days of storage, which indicated that ACNCs had the most obvious effect to improve emulsifying capability of PPI. HIPPEs encapsulated ß-carotene (ßc-HIPPEs) were stabilized by PPI/ACNCs complexes and showed excellent inverted storage stability. Moreover, ßc-HIPPEs exhibited typical shear thinning behavior investigated by rheological properties analysis. During thermal treatment, ultraviolet radiation and oxidation, the retentions of ß-carotene encapsulated in HIPPEs were improved significantly. This research holds promise in expanding Pickering emulsions stabilized by proteins-polysaccharide particles to delivery systems for hydrophobic bioactive compounds.


Asunto(s)
Arachis , Celulosa , Emulsiones , Nanopartículas , Proteínas de Plantas , beta Caroteno , beta Caroteno/química , Emulsiones/química , Nanopartículas/química , Celulosa/química , Arachis/química , Proteínas de Plantas/química , Reología , Tamaño de la Partícula , Oxidación-Reducción
6.
Foods ; 13(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338553

RESUMEN

A high-yield 3-methylthiopropanol (3-Met) yeast Y1402 was obtained from sesame-flavored Daqu, and it was identified as Saccharomycopsis fibuligera. S. fibuligera Y1402 showed a broad range of growth temperatures and pH, as well as the maximum tolerance to glucose, NaCl, nicotine, and 3-Met at 50% (w/w), 15% (w/v), 1.2 g/L, and 18 g/L, respectively. After optimization using single-factor experiments, a Plackett-Burman design, a steepest ascent test, and a Box-Behnken design, the 3-Met yield reached 4.03 g/L by S. fibuligera Y1402 under the following optimal conditions: glucose concentration of 40 g/L, yeast extract concentration of 0.63 g/L, Tween 80 concentration of 2 g/L, L-methionine concentration of 5 g/L, liquid volume of 25 mL/250 mL, initial pH of 5.3, fermentation temperature of 32 °C, inoculum size of 0.8%, shaking speed of 210 rpm, and fermentation time of 54 h. The fermentation was scaled up to a 3 L fermenter under the optimized conditions, and the yield of 3-Met reached 0.71 g/L. Additionally, an aroma analysis revealed that the flavor substances produced by S. fibuligera Y1402 in sorghum hydrolysate medium was mainly composed of compounds with floral, sweet, creamy, roasted nut, and clove-like aromas. Therefore, S. fibuligera has great potential for application in the brewing of Baijiu and other fermented foods.

7.
Foods ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254597

RESUMEN

Soy molasses is rich in oligosaccharides like sucrose, stachyose, and raffinose, with stachyose and raffinose being functional oligosaccharides. Harnessing soy molasses for the production of functional soy oligosaccharides (FSO) can significantly elevate its value. Biological purification, a method leveraging the selective utilization of different carbon sources by microorganisms, allows for the specific removal of sucrose from soy molasses while preserving stachyose and raffinose, thereby increasing the FSO content. This research identified a yeast named YT312 with strong purification capabilities for soy molasses and optimized the purification conditions. The study revealed that yeast YT312 was Wickerhamomyces anomalus, exhibiting a broad range of growth temperatures and pH levels alongside a high tolerance to glucose, sucrose, and NaCl. Through single-factor and orthogonal experiments, it was established that under specific conditions-0.375% inoculum size, 30 °C fermentation temperature, 150 rpm shaking speed, 10-fold dilution ratio, pH of 7, and 12 h of fermentation-sucrose was completely removed from soy molasses, while functional raffinose and stachyose were retained at rates of 96.1% and 90.2%, respectively. Consequently, W. anomalus YT312 displayed exceptional characteristics for the biological purification of soy molasses and the production of FSO.

8.
J Microbiol Biotechnol ; 34(2): 330-339, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38073331

RESUMEN

Corn cobs were fermented with Aspergillus niger to produce soluble dietary fiber (SDF) of high quality and excellent food safety. In this work, the fermentation process was optimized by single-factor test and response surface methodology (RSM). The optimal fermentation conditions were determined to be a material-liquid ratio of 1:30, an inoculum concentration of 11%, a temperature of 32°C, a time of 6 days, and a shaking speed of 200 r/min. Under these conditions, the SDF yield of corn cob increased from 2.34% to 11.92%, and the ratio of soluble dietary fiber to total dietary fiber (SDF/TDF) reached 19.08%, meeting the requirements for high-quality dietary fiber (SDF/TDF of more than 10%). Scanning electron microscopy (SEM) and Fourier-transformed infrared spectroscopy (FT-IR) analysis revealed that the fermentation effectively degraded part of cellulose and hemicellulose, resulting in the formation of a loose and porous structure. After fermentation the water swelling capacity, water-holding capacity, and oil-holding capacity of the corn cob SDF were significantly improved and the adsorption capacity of glucose, cholesterol, and nitrite ions all increased by more than 20%. Moreover, the total phenolic content increased by 20.96%, which correlated with the higher antioxidant activity of SDF. Overall, the fermentation of corn cobs by A. niger increased the yield and enhanced the functional properties of dietary fiber (DF) as well.


Asunto(s)
Aspergillus niger , Zea mays , Zea mays/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Fibras de la Dieta/metabolismo , Agua
9.
Foods ; 12(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38137185

RESUMEN

The objective of this study was to examine the impacts of the combing of Agrocybe aegerita polysaccharides (AAPS) with Bifidobacterium lactis Bb-12 (Bb-12) on antioxidant activity, anti-aging properties, and modulation of gut microbiota. The results demonstrated that the AAPS and Bb-12 complex significantly increased the average lifespan of male and female Drosophila melanogaster under natural aging conditions (p < 0.05), with an improvement of 8.42% and 9.79%, respectively. Additionally, the complex enhanced their climbing ability and increased antioxidant enzyme activity, protecting them from oxidative damage induced by H2O2. In D-galactose induced aging mice, the addition of AAPS and Bb-12 resulted in significantly increase in antioxidant enzyme activity, regulation of aging-related biomarker levels, changed gut microbiota diversity, restoration of microbial structure, and increased abundance of beneficial bacteria, particularly lactobacilli, in the intestines. These findings suggested that the complex of AAPS and Bb-12 had the potential to serve as a dietary supplement against organism aging and oxidative stress.

10.
Foods ; 12(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37297449

RESUMEN

Fermented foods, which have emerged fortuitously over the course of human development, have become an essential part of human history worldwide [...].

11.
Int J Biol Macromol ; 242(Pt 2): 124879, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37192711

RESUMEN

The development of Pickering emulsions which are applicable to the food industry still remains challenges due to the limited availability for biocompatible, edible and natural emulsifiers. The purpose of this study was to extract cellulose nanocrystals from litchi peels (LP-CNCs), and evaluate their emulsifying properties. The results showed that the LP-CNCs were needle-like and they possessed high crystallinity (72.34 %) and aspect ratio. When the concentrations of LP-CNCs were >0.7 wt% or the contents of oil were no >0.5, stable Pickering emulsions were obtained. The microstructures of emulsions confirmed that LP-CNCs formed dense interfacial layers on the surface of oil droplets, which functioned as barriers to prevent aggregation and flocculation among droplets. Rheological results showed that the emulsions exhibited typical shear thinning behavior. The elastic of emulsions was dominant, and their gel strength could be enhanced by regulating the contents of emulsifiers or oil. Additionally, the Pickering emulsions stabilized by LP-CNCs showed extremely high pH, ionic strength, and temperature tolerance. This strategy provides an innovative alternative to tackle the dilemma of preparing highly stable Pickering emulsions using natural particles in food products.


Asunto(s)
Litchi , Nanopartículas , Celulosa/química , Emulsiones/química , Frutas , Emulsionantes , Nanopartículas/química
12.
Foods ; 11(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36496591

RESUMEN

Polysaccharides extracted from Agrocybe aegerita (AAPS) have various physiological effects. In this study, we used the naturally aging Drosophila melanogaster and D-galactose-induced aging mice as animal models to study the anti-aging effects of AAPS via the alleviation of oxidative stress and regulation of gut microbiota. Results showed that AAPS could significantly prolong lifespan and alleviate oxidative stress induced by H2O2 of Drosophila melanogaster. In addition, AAPS significantly increased the activities of antioxidant enzymes in Drosophila melanogaster and mice, and reduced the content of MDA. Furthermore, AAPS reshaped the disordered intestinal flora, increased the abundance ratio of Firmicutes to Bacteroidetes, and increased the abundance of beneficial bacteria Lactobacillus. Our results demonstrated that AAPS had good antioxidant and potential anti-aging effects in vivo.

13.
Foods ; 11(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36429207

RESUMEN

3-Methylthio-1-propanol (3-Met) is widely used as a flavoring substance and an essential aroma ingredient in many foods. Producing 3-Met by microbial transformation is green and eco-friendly. In the present study, one strain, YHM-G, which produced a high level of 3-Met, was isolated from the Baijiu-producing environment. Strain YHM-G was identified as Hyphopichia burtonii according to its morphological properties, physiological and biochemical characteristics, and ribosomal large subunit 26S rRNA gene D1/D2 domain sequence analysis. The optimal conditions for 3-Met production by YHM-G were obtained by single factor design, Plackett-Burman design, steepest ascent path design and response surface methodology as follows: 42.7 g/L glucose, pH 6, 0.9 g/L yeast extract, 6 g/L L-methionine (L-Met), culture temperature 28 °C, shaking speed 210 rpm, loading volume 50 mL/250 mL, inoculum size 0.5% (v/v), culturing period 48 h and 2.5 g/L Tween-80. Under these optimal conditions, the 3-Met production by strain YHM-G was 3.16 g/L, a value 88.1% higher than that before optimization. Strain YHM-G can also produce a variety of flavor compounds that are important for many foods. This strain thus has the potential to increase the abundance of 3-Met in some fermented foods and enhance their aroma profiles.

14.
Foods ; 11(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36076846

RESUMEN

The production of xylooligosaccharides (XOS) from Jiuzao was studied using a two-stage process based on autohydrolysis pretreatment followed by enzymatic hydrolysis. Jiuzao was autohydrolyzed under conditions where temperature, time, particle size, and solid-liquid ratio were varied experimentally. Optimal XOS production was obtained from Jiuzao with a >20 mesh particle size treated at 181.5 °C for 20 min with a 1:13.6 solid-liquid ratio. Subsequently, optimal enzymatic hydrolysis conditions for xylanase XynAR were identified as 60 °C, pH 5, and xylanase XynAR loading of 15 U/mL. Using these conditions, a yield of 34.2% XOS was obtained from Jiuzao within 2 h. The process developed in the present study could enable effective and ecofriendly industrial production of XOS from Jiuzao.

15.
3 Biotech ; 12(1): 24, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35036272

RESUMEN

In this study, a novel feruloyl esterase (BpFae) from Burkholderia pyrrocinia B1213 was purified, biochemically characterized, and applied in releasing ferulic acid from wheat bran. The molecular mass of BpFae was approximately 60 kDa by SDS-PAGE, and the enzyme was a homomultimer in solution. BpFae displayed maximum activity at pH 4.5-5.0 and was stable at pH 3.0-7.0. The optimal temperature for BpFae was 50 °C. BpFae activity was not affected by most metal ions tested and was significantly increased by Tween-20 and Triton-100. Purified BpFae exhibited a preference for methyl ferulate (41.78 U mg-1) over methyl p-coumarate (38.51 U mg-1) and methyl caffeate (35.36 U mg-1) and had the lowest activity on methyl sinapate (1.79 U mg-1). Under the optimum conditions, the K m and V max for methyl ferulate were 0.53 mM and 86.74 U mg-1, respectively. Residues Ser209, His492, and Glu245 in the catalytic pocket of BpFae could form hydrogen bonds with the substrate and were crucial for catalytic activity and substrate specificity. When G11 xylanase XynA and BpFae were used separately for hydrolyzing de-starched wheat bran (DSWB), the ferulic acid released was undetectable and 1.78%, respectively, whereas it was increased to 59.26% using the mixture of the two enzymes. Thus, BpFae is considered an attractive candidate for the production of ferulic acid from agricultural by-products. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03066-2.

16.
Front Bioeng Biotechnol ; 9: 755003, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568305

RESUMEN

A novel treatment involving enzymatic hydrolysis using an acidic xylanase coupled with ultrasound was performed to improve the xylo-oligosaccharides (XOS) yield from corncob bran. The acidic xylanase (XynB) was purified to a most suitable pH, temperature, and operational parameters for ultrasound-assisted hydrolysis were determined. A preliminary mechanistic investigation was performed through circular dichroism (CD) spectroscopy, scanning electron microscope (SEM) and a laser particle size analyzer, and the effects of ultrasound on enzyme (XynB) and substrate (corncob bran) were assessed. The results show that the maximum XOS yield was 20.71% when the reaction pH and temperature were 4.3 and 50°C, the ultrasonic parameters were 50 kHz and 0.40 W/cm2, which was 2.55 fold higher than that obtained using a non-ultrasound-assisted enzymatic preparation. Mechanism studies indicated that ultrasonic pretreatment could reduce the ß-fold content and increase the random coil content. Changes in structure and size of substrate were observed. The specific surface area of the XAC molecules is easy to carry out enzymatic reaction, which is beneficial to the production of XOS.

17.
Front Microbiol ; 12: 663744, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135875

RESUMEN

Baijiu is an important fermented product in China. A yeast named YX3307 that is capable of producing a large amount of ethyl caproate (EC) was isolated from Daqu, a crude fermentation starter for Baijiu. This yeast was identified as Clavispora lusitaniae on the basis of its morphological properties, physiological and biochemical characteristics, and 26S rDNA sequence. Single-factor experiments were conducted to obtain the optimum fermentation conditions for EC production by YX3307. The highest EC yield (62.0 mg/L) from YX3307 was obtained with the following culture conditions: inoculum size 7.5% (v/v), seed cell age 30 h, sorghum hydrolysate medium (SHM) with a sugar content of 10 Brix and an initial pH of 6.0; incubation at 28°C with shaking at 180 rpm for 32 h; addition of 10% (v/v) anhydrous ethanol and 0.04% (v/v) caproic acid at 32 and 40 h, respectively, static culture at 20°C until 72 h. YX3307 synthesized more EC than ethyl acetate, ethyl lactate, ethyl butyrate, and ethyl octanoate. An intracellular enzyme or cell membrane enzyme was responsible for EC synthesis. YX3307 can produce many flavor compounds that are important for high-quality Baijiu. Thus, it has potential applications in improving the flavor and quality of Baijiu.

18.
Front Microbiol ; 11: 598758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329488

RESUMEN

Wickerhamomyces anomalus is conducive to the synthesis of ester compounds in brewing the Chinese liquor Baijiu; esters are crucial for the quality of Baijiu. In this study, simulated solid-state fermentation for Baijiu production was used to explore whether artificial addition of W. anomalus could improve the flavor substance in Baijiu, and the underlying mechanisms. Two experimental groups were studied, in which W. anomalus Y3604 (Group A) and YF1503 (Group B) were added, respectively; in the control group (Group C), no W. anomalus was added. Adding strain Y3604 increased the content of esters in fermentation samples, especially ethyl acetate and ethyl caproate, and reduced the content of higher alcohols. Adding strain YF1503 had little effect on the ester content but decreased the content of higher alcohols. The diversity and abundance of prokaryotic genera in Group A and B samples were similar, but there were some differences compared with Group C. The correlations of genera in Group A or B samples were simple compared with group C. Although the predominant eukaryotic genera in the three groups were consistent, the abundance of each gene varied among groups. Based on our findings, bioaugmentation of Baijiu fermentation with W. anomalus will change the ethyl acetate content and cause changes in the levels of other flavor substances. We suggest that the changes in flavor substances caused by the addition of W. anomalus are mainly due to changes in the microbial community structure that result from the addition of W. anomalus.

19.
Int J Biol Macromol ; 164: 1748-1757, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32777426

RESUMEN

A xylanase from Talaromyces thermophiles F1208 (T-Xyn) was used specifically to explore the effects of disulfide bond on hydrolytic activity. The T-Xyn-C122S-C166S mutant does not have the C122-C166 disulfide bond present in wild-type T-Xyn, whereas T-Xyn-T38C-S50C and T-Xyn-T38C-S50C-C122S-C166S mutants have an introduced disulfide bond, C38-C50, to T-Xyn and T-Xyn-C122S-C166S, respectively. The optimum pH of T-Xyn-T38C-S50C and T-Xyn-T38C-S50C-C122S-C166S was lower than that of T-Xyn and T-Xyn-C122S-C166S. The introduction of a disulfide bond caused a decrease in the optimum temperature and thermal stability of T-Xyn. The existence of a disulfide bond has a strong influence on the hydrolysis characteristics of T-Xyn, which caused changes in the composition and proportion of the hydrolysate products. T-Xyn-T38C-S50C produces the highest level of xylose when using beechwood xylan as the substrate, whereas T-Xyn produces the highest level of xylobiose and T-Xyn-T38C-S50C-C122S-C166S produces the largest amount of xylotriose. When birchwood xylan was used as the substrate, the introduction of a disulfide bond increased the content of xylose, decreased the content of xylotriose and a high degree of polymerization (DP ≥ 5) was observed. The hydrolysis of oat-spelt xylan is more complex with the introduction of the disulfide bond causing an increase in the degradation rate of xylotriose.


Asunto(s)
Endo-1,4-beta Xilanasas/química , Eurotiales/metabolismo , Xilosidasas/química , Secuencia de Aminoácidos , Disulfuros , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Especificidad por Sustrato , Temperatura , Xilanos/metabolismo
20.
3 Biotech ; 10(9): 387, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32832337

RESUMEN

Burkholderia pyrrocinia B1213, a novel microbe isolated from a Baijiu-producing environment, displayed strong cellulolytic activity on agar plates with glucan as the carbon source and had an activity of 674.5 U/mL after culturing with barley. Genome annotation of B. pyrrocinia identificated a single endoglucanase (EG)-encoding gene, designated as BpEG01790. The endoglucanase BpEG01790 shows 98.28% sequence similarity with an endo-ß-1,4-glucanase (EC 3.2.1.4) from Burkholderia stabilis belonging to glycoside hydrolase family 8 (GH8). The gene BpEG01790 has an open reading frame of 1218 bp encoding a 406 amino acid (AA) residue protein (43.0 kDa) with a 40-AA signal peptide. BpEG01790 was successfully cloned into pET28a( +) with and without the signal peptide; however, attempts to overexpress this protein in Escherichia coli BL21(DE3) cells using this expression system failed. BpEG01790 was also cloned into the pCold TF vector. Active BpEG01790 was successfully overexpressed with or without the signal peptide using the pCold TF vector expression system and E. coli BL21 (DE3) cells. Overexpression of recombinant BpEG01790 without the signal peptide was higher compared with the construct that included the signal peptide. Optimization of culture conditions improved the enzyme activity by 12.5-fold. This is the first report describing the heterologous soluble overexpression of an EG belonging to GH8 from B. pyrrocinia using TF as a molecular chaperone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA