Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Transplant Direct ; 10(7): e1658, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38881741

RESUMEN

Background: Transplantation of human-induced pluripotent stem cell (hiPSC)-derived islet organoids is a promising cell replacement therapy for type 1 diabetes (T1D). It is important to improve the efficacy of islet organoids transplantation by identifying new transplantation sites with high vascularization and sufficient accommodation to support graft survival with a high capacity for oxygen delivery. Methods: A human-induced pluripotent stem cell line (hiPSCs-L1) was generated constitutively expressing luciferase. Luciferase-expressing hiPSCs were differentiated into islet organoids. The islet organoids were transplanted into the scapular brown adipose tissue (BAT) of nonobese diabetic/severe combined immunodeficiency disease (NOD/SCID) mice as the BAT group and under the left kidney capsule (KC) of NOD/SCID mice as a control group, respectively. Bioluminescence imaging (BLI) of the organoid grafts was performed on days 1, 7, 14, 28, 35, 42, 49, 56, and 63 posttransplantation. Results: BLI signals were detected in all recipients, including both the BAT and control groups. The BLI signal gradually decreased in both BAT and KC groups. However, the graft BLI signal intensity under the left KC decreased substantially faster than that of the BAT. Furthermore, our data show that islet organoids transplanted into streptozotocin-induced diabetic mice restored normoglycemia. Positron emission tomography/MRI verified that the islet organoids were transplanted at the intended location in these diabetic mice. Immunofluorescence staining revealed the presence of functional organoid grafts, as confirmed by insulin and glucagon staining. Conclusions: Our results demonstrate that BAT is a potentially desirable site for islet organoid transplantation for T1D therapy.

2.
Pharmaceuticals (Basel) ; 17(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38931348

RESUMEN

The establishment of a compliant radiopharmacy facility within a university setting is crucial for supporting fundamental and preclinical studies, as well as for the production of high-quality radiopharmaceuticals for clinical testing in human protocols as part of Investigational New Drug (IND) applications that are reviewed and approved by the U.S. Food and Drug Administration (FDA). This manuscript details the design and construction of a 550 ft2 facility, which included a radiopharmacy and a radiochemistry laboratory, to support radiopharmaceutical development research and facilitate translational research projects. The facility was designed to meet FDA guidelines for the production of aseptic radiopharmaceuticals in accordance with current good manufacturing practice (cGMP). A modular hard-panel cleanroom was constructed to meet manufacturing classifications set by the International Organization of Standardization (ISO), complete with a gowning room and an anteroom. Two lead-shielded hot cells and two dual-mini hot cells, connected via underground trenches containing shielded conduits, were installed to optimize radioactive material transfer while minimizing personnel radiation exposure. Concrete blocks and lead bricks provided sufficient and cost-effective radiation shielding for the trenches. Air quality was controlled using pre-filters and high-efficiency particulate air (HEPA) filters to meet cleanroom ISO7 (Class 10,000) standards. A laminar-flow biosafety cabinet was installed in the cleanroom for preparation of sterile dose vials. Noteworthy was a laminar-flow insert in the hot cell that provided a shielded laminar-flow sterile environment meeting ISO5 (class 100) standards. The design included the constant control and monitoring of differential air pressures across the cleanroom, anteroom, gowning room, and controlled research space, as well as maintenance of temperature and humidity. The facility was equipped with state-of-the-art equipment for quality control and release testing of radiopharmaceuticals. Administrative controls and standard operating procedures (SOPs) were established to ensure compliance with manufacturing standards and regulatory requirements. Overall, the design and construction of this radiopharmacy facility exemplified a commitment to advancing fundamental, translational, and clinical applications of radiopharmaceutical research within an academic environment.

3.
Alzheimers Dement (N Y) ; 10(1): e12459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469552

RESUMEN

Introduction: Nose-to-brain (N2B) insulin delivery has potential for Alzheimer's disease (AD) therapy. However, clinical implementation has been challenging without methods to follow N2B delivery non-invasively. Positron emission tomography (PET) was applied to measure F-18-labeled insulin ([18F]FB-insulin) from intranasal dosing to brain uptake in non-human primates following N2B delivery. Methods: [18F]FB-insulin was prepared by reacting A1,B29-di(tert-butyloxycarbonyl)insulin with [18F]-N-succinimidyl-4-fluorobenzoate. Three methods of N2B delivery for [18F]FB-insulin were compared - delivery as aerosol via tubing (rhesus macaque, n = 2), as aerosol via preplaced catheter (rhesus macaque, n = 3), and as solution via preplaced catheter (cynomolgus macaque, n = 3). Following dosing, dynamic PET imaging (120 min) quantified delivery efficiency to the nasal cavity and whole brain. Area under the time-activity curve was calculated for 46 regions of the cynomolgus macaque brain to determine regional [18F]FB-insulin levels. Results: Liquid instillation of [18F]FB-insulin by catheter outperformed aerosol methods for delivery to the subject (39.89% injected dose vs 10.03% for aerosol via tubing, 0.17% for aerosol by catheter) and subsequently to brain (0.34% injected dose vs 0.00020% for aerosol via tubing, 0.05% for aerosol by catheter). [18F]FB-insulin was rapidly transferred across the cribriform plate to limbic and frontotemporal areas responsible for emotional and memory processing. [18F]FB-insulin half-life was longer in olfactory nerve projection sites with high insulin receptor density compared to the whole brain. Discussion: The catheter-based liquid delivery approach combined with PET imaging successfully tracked the fate of N2B [18F]FB-insulin and is thought to be broadly applicable for assessments of other therapeutic agents. This method can be rapidly applied in humans to advance clinical evaluation of N2B insulin as an AD therapeutic. Highlights for: [18F]FB-insulin passage across the cribriform plate was detected by PET.Intranasal [18F]FB-insulin reached the brain within 13 min.[18F]FB-insulin activity was highest in emotional and memory processing regions.Aerosol delivery was less efficient than liquid instillation by preplaced catheter.Insulin delivery to the cribriform plate was critical for arrival in the brain.

4.
iScience ; 26(7): 107083, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37416468

RESUMEN

Current methods of in vivo imaging islet cell transplants for diabetes using magnetic resonance imaging (MRI) are limited by their low sensitivity. Simultaneous positron emission tomography (PET)/MRI has greater sensitivity and ability to visualize cell metabolism. However, this dual-modality tool currently faces two major challenges for monitoring cells. Primarily, the dynamic conditions of PET such as signal decay and spatiotemporal change in radioactivity prevent accurate quantification of the transplanted cell number. In addition, selection bias from different radiologists renders human error in segmentation. This calls for the development of artificial intelligence algorithms for the automated analysis of PET/MRI of cell transplantations. Here, we combined K-means++ for segmentation with a convolutional neural network to predict radioactivity in cell-transplanted mouse models. This study provides a tool combining machine learning with a deep learning algorithm for monitoring islet cell transplantation through PET/MRI. It also unlocks a dynamic approach to automated segmentation and quantification of radioactivity in PET/MRI.

5.
Pharmaceutics ; 15(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37111624

RESUMEN

A paradigm shift is underway in cancer diagnosis and therapy using radioactivity-based agents called radiopharmaceuticals. In the new strategy, diagnostic imaging measures the tumor uptake of radioactive agent "X" in a patient's specific cancer, and if uptake metrics are realized, the patient can be selected for therapy with radioactive agent "Y". The X and Y represent different radioisotopes that are optimized for each application. X-Y pairs are known as radiotheranostics, with the currently approved route of therapy being intravenous administration. The field is now evaluating the potential of intra-arterial dosing of radiotheranostics. In this manner, a higher initial concentration can be achieved at the cancer site, which could potentially enhance tumor-to-background targeting and lead to improved imaging and therapy. Numerous clinical trials are underway to evaluate these new therapeutic approaches that can be performed via interventional radiology. Of further interest is changing the therapeutic radioisotope that provides radiation therapy by ß- emission to radioisotopes that also decay by α-particle emissions. Alpha (α)-particle emissions provide high energy transfer to the tumors and have distinct advantages. This review discusses the current landscape of intra-arterially delivered radiopharmaceuticals and the future of α-particle therapy with short-lived radioisotopes.

6.
Mol Imaging Biol ; 25(2): 401-412, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36071300

RESUMEN

PURPOSE: Individual imaging modalities have certain advantages, but each suffers from drawbacks that other modalities may overcome. The goal of this study was to create a novel contrast agent suitable for various imaging modalities that after a single administration can bridge and strengthen the collaboration between the research fields as well as enrich the information obtained from any one modality. PROCEDURES: The contrast agent platform is based on dextran-coated iron oxide nanoparticles (for MRI and MPI) and synthesized using a modified co-precipitation method, followed by a series of conjugation steps with a fluorophore (for fluorescence and photoacoustic imaging), thyroxine (for CT imaging), and chelators for radioisotope labeling (for PET imaging). The fully conjugated agent was then tested in vitro in cell uptake, viability, and phantom studies and in vivo in a model of intraductal injection and in a tumor model. RESULTS: The agent was synthesized, characterized, and tested in vitro where it showed the ability to produce a signal on MRI/MPI/FL/PA/CT and PET images. Studies in cells showed the expected concentration-dependent uptake of the agent without noticeable toxicity. In vivo studies demonstrated localization of the agent to the ductal tree in mice after intraductal injection with different degrees of resolution, with CT being the best for this particular application. In a model of injected labeled tumor cells, the agent produced a signal with all modalities and showed persistence in tumor cells confirmed by histology. CONCLUSIONS: A fully functional omniparticle contrast agent was synthesized and tested in vitro and in vivo in two animal models. Results shown here point to the generation of a potent signal in all modalities tested without detrimental toxicity. Future use of this agent includes its exploration in various models of human disease including image-guided diagnostic and therapeutic applications.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Ratones , Animales , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones , Modelos Animales , Fantasmas de Imagen
7.
Front Chem ; 11: 1322773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38333550

RESUMEN

Introduction: Better treatments for ovarian cancer are needed to eliminate residual peritoneal disease after initial debulking surgery. The present study evaluated Trastuzumab to deliver Pb-214/Bi-214 for targeted alpha therapy (TAT) for HER2-positive ovarian cancer in mouse models of residual disease. This study is the first report of TAT using a novel Radon-222 generator to produce short-lived Lead-214 (Pb-214, t1/2 = 26.8 min) in equilibrium with its daughter Bismuth-214 (Bi-214, t1/2 = 19.7 min); referred to as Pb-214/Bi-214. In this study, Pb-214/Bi-214-TCMC-Trastuzumab was tested. Methods: Trastuzumab and control IgG antibody were conjugated with TCMC chelator and radiolabeled with Pb-214/Bi-214 to yield Pb-214/Bi-214-TCMC-Trastuzumab and Pb-214/Bi-214-TCMC-IgG1. The decay of Pb-214/Bi-214 yielded α-particles for TAT. SKOV3 and OVAR3 human ovarian cancer cell lines were tested for HER2 levels. The effects of Pb-214/Bi-214-TCMC-Trastuzumab and appropriate controls were compared using clonogenic assays and in mice bearing peritoneal SKOV3 or OVCAR3 tumors. Mice control groups included untreated, Pb-214/Bi-214-TCMC-IgG1, and Trastuzumab only. Results and discussion: SKOV3 cells had 590,000 ± 5,500 HER2 receptors/cell compared with OVCAR3 cells at 7,900 ± 770. In vitro clonogenic assays with SKOV3 cells showed significantly reduced colony formation after Pb-214/Bi-214-TCMC-Trastuzumab treatment compared with controls. Nude mice bearing luciferase-positive SKOV3 or OVCAR3 tumors were treated with Pb-214/Bi-214-TCMC-Trastuzumab or appropriate controls. Two 0.74 MBq doses of Pb-214/Bi-214-TCMC-Trastuzumab significantly suppressed the growth of SKOV3 tumors for 60 days, without toxicity, compared with three control groups (untreated, Pb-214/Bi-214-TCMC-IgG1, or Trastuzumab only). Mice-bearing OVCAR3 tumors had effective therapy without toxicity with two 0.74 MBq doses of Pb-214/Bi-214-TCMC-trastuzumab or Pb-214/Bi-214-TCMC-IgG1. Together, these data indicated that Pb-214/Bi-214 from a Rn-222 generator system was successfully applied for TAT. Pb-214/Bi-214-TCMC-Trastuzumab was effective to treat mouse xenograft models. Advantages of Pb-214/Bi-214 from the novel generator systems include high purity, short half-life for fractioned therapy, and hourly availability from the Rn-222 generator system. This platform technology can be applied for a variety of cancer treatment strategies.

8.
Biomed Mater ; 16(5)2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34280907

RESUMEN

Nanomedicine has recently experienced unprecedented growth and development. However, the complexity of operations at the nanoscale introduces a layer of difficulty in the clinical translation of nanodrugs and biomedical nanotechnology. This problem is further exacerbated when engineering and optimizing nanomaterials for biomedical purposes. To navigate this issue, artificial intelligence (AI) algorithms have been applied for data analysis and inference, allowing for a more applicable understanding of the complex interaction amongst the abundant variables in a system involving the synthesis or use of nanomedicine. Here, we report on the current relationship and implications of nanomedicine and AI. Particularly, we explore AI as a tool for enabling nanomedicine in the context of nanodrug screening and development, brain-machine interfaces and nanotoxicology. We also report on the current state and future direction of nanomedicine and AI in cancer, diabetes, and neurological disorder therapy.


Asunto(s)
Inteligencia Artificial , Materiales Biocompatibles , Nanoestructuras , Nanomedicina Teranóstica , Algoritmos , Animales , Diabetes Mellitus Tipo 1/diagnóstico por imagen , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Ratones , Nanomedicina , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
9.
Life (Basel) ; 10(9)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961769

RESUMEN

Islet transplantation has great potential as a cure for type 1 diabetes. At present; the lack of a clinically validated non-invasive imaging method to track islet grafts limits the success of this treatment. Some major clinical imaging modalities and various molecular probes, which have been studied for non-invasive monitoring of transplanted islets, could potentially fulfill the goal of understanding pathophysiology of the functional status and viability of the islet grafts. In this current review, we summarize the recent clinical studies of a variety of imaging modalities and molecular probes for non-invasive imaging of transplanted beta cell mass. This review also includes discussions on in vivo detection of endogenous beta cell mass using clinical imaging modalities and various molecular probes, which will be useful for longitudinally detecting the status of islet transplantation in Type 1 diabetic patients. For the conclusion and perspectives, we highlight the applications of multimodality and novel imaging methods in islet transplantation.

10.
PLoS One ; 13(10): e0206246, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30352095

RESUMEN

Antibody-drug conjugate (ADC) is a class of targeted cancer therapies that combine the advantages of monoclonal antibody (mAb)'s specific targeting and chemotherapy's potent cytotoxicity. The therapeutic effect of ADC is significantly affected by its bioproduction process. This study aims to develop an effective ADC production process using anti-HER2 mAb-drug as a model therapeutic. First, a high titer (>2 g/L) of mAb was produced by Chinese hamster ovary cells from fed-batch cell culture. Both live-cell confocal microscopy imaging and flow cytometry analysis demonstrated that the produced mAb and ADC had strong and specific binding to HER2+ cell line BT474. Second, various conjugation conditions of mAb and drug, including linker selection, ratio of drug and mAb, and conjugation approaches, were investigated to improve the production yield and product quality. Finally, the ADC structure and biological quality were evaluated by SDS-PAGE and anti-breast cancer toxicity study, respectively. The ADC with integral molecular structure and high cytotoxicity (IC50 of 1.95 nM) was produced using the optimized production process. The robust bioproduction process could guide the development of ADC-based biopharmaceuticals.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoconjugados/química , Preparaciones Farmacéuticas/química , Tecnología Farmacéutica/métodos , Animales , Anticuerpos Monoclonales/inmunología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Células CHO , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cricetinae , Cricetulus , Femenino , Humanos , Inmunoconjugados/farmacología , Receptor ErbB-2/inmunología
12.
Int J Mol Sci ; 19(4)2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29561763

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a poor prognosis. There is a clinical need for effective, targeted therapy strategies that destroy both differentiated TNBC cells and TNBC cancer initiating cells (CICs), as the latter are implicated in the metastasis and recurrence of TNBC. Chondroitin sulfate proteoglycan 4 (CSPG4) is overexpressed on differentiated tumor cells and CICs obtained from TNBC patient specimens, suggesting that CSPG4 may be a clinically relevant target for the imaging and therapy of TNBC. The purpose of this study was to determine whether α-particle radioimmunotherapy (RIT) targeting TNBC cells using the CSPG4-specific monoclonal antibody (mAb) 225.28 as a carrier was effective at eliminating TNBC tumors in preclinical models. To this end, mAb 225.28 labeled with 212Pb (212Pb-225.28) as a source of α-particles for RIT was used for in vitro Scatchard assays and clonogenic survival assays with human TNBC cells (SUM159 and 2LMP) grown as adherent cells or non-adherent CIC-enriched mammospheres. Immune-deficient mice bearing orthotopic SUM159 or 2LMP xenografts were injected i.v. with the targeted (225.28) or irrelevant isotype-matched control (F3-C25) mAbs, labeled with 99mTc, 125I, or 212Pb for in vivo imaging, biodistribution, or tumor growth inhibition studies. 212Pb-225.28 bound to adherent SUM159 and 2LMP cells and to CICs from SUM159 and 2LMP mammospheres with a mean affinity of 0.5 nM. Nearly ten times more binding sites per cell were present on SUM159 cells and CICs compared with 2LMP cells. 212Pb-225.28 was six to seven times more effective than 212Pb-F3-C25 at inhibiting SUM159 cell and CIC clonogenic survival (p < 0.05). Radiolabeled mAb 225.28 showed significantly higher uptake than radiolabeled mAb F3-C25 in SUM159 and 2LMP xenografts (p < 0.05), and the uptake of 212Pb-225.28 in TNBC xenografts was correlated with target epitope expression. 212Pb-225.28 caused dose-dependent growth inhibition of SUM159 xenografts; 0.30 MBq 212Pb-225.28 was significantly more effective than 0.33 MBq 212Pb-F3-C25 at inhibiting tumor growth (p < 0.01). These results suggest that CSPG4-specific 212Pb-225.28 is a useful reagent for RIT of CSPG4-expressing tumors, including metastatic TNBC.


Asunto(s)
Anticuerpos/uso terapéutico , Antígenos/inmunología , Radioisótopos de Plomo/química , Proteoglicanos/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Células Clonales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Desnudos , Células Madre Neoplásicas/patología , Distribución Tisular , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nucl Med Biol ; 58: 67-73, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29413459

RESUMEN

INTRODUCTION: We recently validated monoclonal antibody (mAb) 376.96 as an effective carrier for targeted α-particle radioimmunotherapy (RIT) with 212Pb in ovarian cancer mouse models. In this study, we tested the binding of radiolabeled mAb 376.96 to human pancreatic ductal adenocarcinoma (PDAC) cells and localization in xenografts in immune-deficient mice and evaluated 212Pb-labeled 376.96 (212Pb-376.96) for PDAC therapy. METHODS: In vitro Scatchard assays assessed the specific binding of 212Pb-376.96 to human PDAC3 adherent differentiated cells and non-adherent cancer initiating cells (CICs) dissociated from tumorspheres. In vitro clonogenic assays were used to measure the proliferation of adherent PDAC3 cells and CIC-enriched tumorspheres treated with 212Pb-376.96 or the irrelevant isotype-matched 212Pb-F3-C25. Mice bearing patient derived pancreatic cancer Panc039 xenografts were i.v. injected with 0.17-0.70 MBq 212Pb-376.96 or isotype control 212Pb-F3-C25, and used for biodistribution and tumor growth inhibition studies. Mice bearing orthotopic PDAC3 xenografts were i.v. co-injected with 99mTc-376.96 and 125I-F3-C25 and used for biodistribution studies. RESULTS: 212Pb-376.96 specifically bound to PDAC3 adherent and dissociated tumorsphere CICs; Kd values averaged 9.0 and 21.7 nM, respectively, with 104-105 binding sites/cell. 212Pb-376.96 inhibited the clonogenic survival of PDAC3 cells or CICs dissociated from tumorspheres 3-6 times more effectively than isotype-matched control 212Pb-F3-C25. Panc039 s.c. tumors showed significantly higher uptake of 212Pb-376.96 (14.0 ±â€¯2.1% ID/g) compared to 212Pb-F3-C25 (6.5 ±â€¯0.9% ID/g, p < .001) at 24 h after dosing. Orthotopic PDAC3 tumors showed significantly higher uptake of 99mTc-376.96 (6.4 ±â€¯1.8% ID/g) compared to 125I-F3-C25 (3.9 ±â€¯0.9% ID/g, p < .05) at 24 h after dosing. Panc039 tumor growth was significantly inhibited by 212Pb-376.96 compared to 212Pb-F3-C25 or non-treated control tumors (p < .05). CONCLUSION: Our results provide evidence for the efficacy of B7-H3 targeted RIT against preclinical models of pancreatic ductal adenocarcinoma (PDAC) and support future studies with 212Pb-376.96 in combination with chemotherapy to potentiate efficacy against PDAC.


Asunto(s)
Inmunoconjugados/uso terapéutico , Radioisótopos de Plomo , Neoplasias Pancreáticas/radioterapia , Radioinmunoterapia/métodos , Animales , Diferenciación Celular/efectos de la radiación , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Humanos , Inmunoconjugados/farmacocinética , Marcaje Isotópico , Ratones , Distribución Tisular
14.
Nucl Med Biol ; 47: 23-30, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28104527

RESUMEN

INTRODUCTION: Novel therapies that effectively kill both differentiated cancer cells and cancer initiating cells (CICs), which are implicated in causing chemotherapy-resistance and disease recurrence, are needed to reduce the morbidity and mortality of ovarian cancer. These studies used monoclonal antibody (mAb) 376.96, which recognizes a B7-H3 epitope expressed on ovarian cancer cells and CICs, as a carrier molecule for targeted α-particle radioimmunotherapy (RIT) in preclinical models of human ovarian cancer. METHODS: mAb 376.96 was conjugated to the chelate 2-(4-isothiocyanotobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)-cyclododecane (TCMC) and radiolabeled with 212Pb, a source of α-particles. In vitro Scatchard assays determined the specific binding of 212Pb-376.96 to adherent differentiated or non-adherent CIC-enriched ES-2 and A2780cp20 ovarian cancer cells. Adherent ovarian cancer cells and non-adherent CIC-enriched tumorspheres treated in vitro with 212Pb-376.96 or the irrelevant isotype-matched 212Pb-F3-C25 were assessed for clonogenic survival. Mice bearing i.p. ES-2 or A2780cp20 xenografts were injected i.p. with 0.17-0.70MBq 212Pb-376.96 or 212Pb-F3-C25 and were used for in vivo imaging, ex vivo biodistribution, and therapeutic survival studies. RESULTS: 212Pb-376.96 was obtained in high yield and purity (>98%); Kd values ranged from 10.6-26.6nM for ovarian cancer cells, with 104-105 binding sites/cell. 212Pb-376.96 inhibited the clonogenic survival of ovarian cancer cells up to 40 times more effectively than isotype-matched control 212Pb-F3-C25; combining 212Pb-376.96 with carboplatin significantly decreased clonogenic survival compared to either agent alone. In vivo imaging and biodistribution analysis 24h after i.p. injection of 212Pb-376.96 showed high peritoneal retention and tumor tissue accumulation (28.7% ID/g in ES-2 ascites, 73.1% ID/g in A2780cp20 tumors); normal tissues showed lower and comparable uptake for 212Pb-376.96 and 212Pb-F3-C25. Tumor-bearing mice treated with 212Pb-376.96 alone or combined with carboplatin survived 2-3 times longer than mice treated with 212Pb-F3-C25 or non-treated controls. CONCLUSION: These results support additional RIT studies with 212Pb-376.96 for future evaluation in patients with ovarian cancer.


Asunto(s)
Antígenos B7/inmunología , Epítopos/inmunología , Radioisótopos de Plomo/uso terapéutico , Neoplasias Ováricas/radioterapia , Radioinmunoterapia/métodos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Diferenciación Celular , Línea Celular Tumoral , Supervivencia Celular , Transformación Celular Neoplásica , Femenino , Humanos , Ratones , Neoplasias Ováricas/patología
15.
J Med Chem ; 58(21): 8584-600, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26430878

RESUMEN

A series of fluorine-containing PDE10A inhibitors were designed and synthesized to improve the metabolic stability of [(11)C]MP-10. Twenty of the 22 new analogues had high potency and selectivity for PDE10A: 18a-j, 19d-j, 20a-b, and 21b had IC50 values <5 nM for PDE10A. Seven F-18 labeled compounds [(18)F]18a-e, [(18)F]18g, and [(18)F]20a were radiosynthesized by (18)F-introduction onto the quinoline rather than the pyrazole moiety of the MP-10 pharmacophore and performed in vivo evaluation. Biodistribution studies in rats showed ~2-fold higher activity in the PDE10A-enriched striatum than nontarget brain regions; this ratio increased from 5 to 30 min postinjection, particularly for [(18)F]18a-d and [(18)F]20a. MicroPET studies of [(18)F]18d and [(18)F]20a in nonhuman primates provided clear visualization of striatum with suitable equilibrium kinetics and favorable metabolic stability. These results suggest this strategy may identify a (18)F-labeled PET tracer for quantifying the levels of PDE10A in patients with CNS disorders including Huntington's disease and schizophrenia.


Asunto(s)
Encéfalo/enzimología , Radioisótopos de Flúor/química , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacocinética , Hidrolasas Diéster Fosfóricas/análisis , Tomografía de Emisión de Positrones/métodos , Animales , Encéfalo/diagnóstico por imagen , Radioisótopos de Flúor/farmacocinética , Humanos , Macaca fascicularis , Masculino , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Mol Imaging Biol ; 17(1): 49-57, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25080323

RESUMEN

PURPOSE: The use of receptor-targeted antibodies conjugated to fluorophores is actively being explored for real-time imaging of disease states; however, the toxicity of the bioconjugate has not been assessed in non-human primates. PROCEDURES: To this end, the in vivo toxicity and pharmacokinetics of IRDye800 conjugated to cetuximab (cetuximab-IRDye800; 21 mg/kg; equivalent to 250 mg/m(2) human dose) were assessed in male cynomolgus monkeys over 15 days following intravenous injection and compared with an unlabeled cetuximab-dosed control group. RESULTS: Cetuximab-IRDye800 was well tolerated. There were no infusion reactions, adverse clinical signs, mortality, weight loss, or clinical histopathology findings. The plasma half-life for the cetuximab-IRDye800 and cetuximab groups was equivalent (2.5 days). The total recovered cetuximab-IRDye800 in all tissues at study termination was estimated to be 12 % of the total dose. Both cetuximab-IRDye800 and cetuximab groups showed increased QTc after dosing. The QTc for the cetuximab-dosed group returned to baseline by day 15, while the QTc of the cetuximab-IRDye800 remained elevated compared to baseline. CONCLUSION: IRDye800 in low molar ratios does not significantly impact cetuximab half-life or result in organ toxicity. These studies support careful cardiac monitoring (ECG) for human studies using fluorescent dyes.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/farmacocinética , Colorantes Fluorescentes/química , Indoles/química , Indoles/farmacocinética , Animales , Anticuerpos Monoclonales/química , Cetuximab , Relación Dosis-Respuesta a Droga , Electrocardiografía , Inyecciones Intravenosas , Macaca fascicularis , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/cirugía , Relación Señal-Ruido , Distribución Tisular
17.
J Nucl Med ; 55(10): 1636-42, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25157044

RESUMEN

UNLABELLED: Our purpose was to study the safety, distribution, pharmacokinetics, immunogenicity, and tumor response of intraperitoneal (212)Pb-TCMC-trastuzumab (TCMC is S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra(2-carbamoylmethyl)cyclododecane) in patients with human epidermal growth factor receptor type 2 (HER-2)-expressing malignancy. METHODS: In a standard 3 + 3 phase 1 design for dose escalation, (212)Pb-TCMC-trastuzumab was delivered intraperitoneally less than 4 h after administration of trastuzumab (4 mg/kg intravenously) to patients with peritoneal carcinomatosis who had failed standard therapies. RESULTS: Five dosage levels (7.4, 9.6, 12.6, 16.3, and 21.1 MBq/m(2)) showed minimal toxicity at more than 1 y for the first group and more than 4 mo for others. The lack of substantial toxicity was consistent with the dosimetry assessments (mean equivalent dose to marrow, 0.18 mSv/MBq). Radiation dosimetry assessment was performed using pharmacokinetics data obtained in the initial cohort (n = 3). Limited redistribution of radioactivity out of the peritoneal cavity to circulating blood, which cleared via urinary excretion, and no specific uptake in major organs were observed in 24 h. Maximum serum concentration of the radiolabeled antibody was 22.9% at 24 h (decay-corrected to injection time) and 500 Bq/mL (decay-corrected to collection time). Non-decay-corrected cumulative urinary excretion was 6% or less in 24 h (2.3 half-lives). Dose rate measurements performed at 1 m from the patient registered less than 5µSv/h (using portable detectors) in the latest cohort, significantly less than what is normally observed using nuclear medicine imaging agents. Antidrug antibody assays performed on serum from the first 4 cohorts were all negative. CONCLUSION: Five dose levels of intraperitoneal (212)Pb-TCMC-trastuzumab treatment of patients with peritoneal carcinomatosis showed little agent-related toxicity, consistent with the dosimetry calculations.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Radioisótopos de Plomo/uso terapéutico , Radioinmunoterapia/métodos , Radiometría/métodos , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dosis de Radiación , Receptor ErbB-2/metabolismo , Factores de Tiempo , Trastuzumab
18.
Appl Radiat Isot ; 91: 135-40, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24935116

RESUMEN

Long-acting opioid agonists methadone and l-α-acetylmethadol (LAAM) prevent withdrawal in opioid-dependent persons. Attempts to synthesize [(11)C]-methadone for PET evaluation of brain disposition were unsuccessful. Owing, however, to structural and pharmacologic similarities, we aimed to develop [(11)C]LAAM as a PET ligand to probe the brain exposure of long-lasting opioids in humans. This manuscript describes [(11)C]LAAM synthesis and its biodistribution in mice. The radiochemical synthetic strategy afforded high radiochemical yield, purity and specific activity, thereby making the synthesis adaptable to automated modules.


Asunto(s)
Radioisótopos de Carbono/química , Acetato de Metadil/síntesis química , Acetato de Metadil/farmacocinética , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Animales , Encéfalo/metabolismo , Masculino , Ratones , Tomografía de Emisión de Positrones , Distribución Tisular
19.
Bioorg Med Chem ; 22(9): 2648-54, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24721831

RESUMEN

The radiosyntheses and in vivo evaluation of four carbon-11 labeled quinoline group-containing radioligands are reported here. Radiolabeling of [(11)C]1-4 was achieved by alkylation of their corresponding desmethyl precursors with [(11)C]CH3I. Preliminary biodistribution evaluation in Sprague-Dawley rats demonstrated that [(11)C]1 and [(11)C]2 had high striatal accumulation (at peak time) for [(11)C]1 and [(11)C]2 were 6.0-fold and 4.5-fold at 60 min, respectively. Following MP-10 pretreatment, striatal uptake in rats of [(11)C]1 and [(11)C]2 was reduced, suggesting that the tracers bind specifically to PDE10A. MicroPET studies of [(11)C]1 and [(11)C]2 in nonhuman primates (NHP) also showed good tracer retention in the striatum with rapid clearance from non-target brain regions. Striatal uptake (SUV) of [(11)C]1 reached 1.8 at 30 min with a 3.5-fold striatum:cerebellum ratio. In addition, HPLC analysis of solvent extracts from NHP plasma samples suggested that [(11)C]1 had a very favorable metabolic stability. Our preclinical investigations suggest that [(11)C]1 is a promising candidate for quantification of PDE10A in vivo using PET.


Asunto(s)
Encéfalo/diagnóstico por imagen , Hidrolasas Diéster Fosfóricas/metabolismo , Radiofármacos/síntesis química , Animales , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Macaca fascicularis , Masculino , Hidrolasas Diéster Fosfóricas/química , Tomografía de Emisión de Positrones , Radiofármacos/metabolismo , Ratas , Ratas Sprague-Dawley , Distribución Tisular
20.
Medchemcomm ; 5(11): 1669-1677, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25584182

RESUMEN

The σ1 receptor is an important target for CNS disorders. We previously identified a σ1 ligand TZ3108 having highly potent (Ki-σ1 = 0.48 nM) and selective affinity for σ1 versus σ2 receptors. TZ3108 was 18F-labeled with F-18 for in vivo evaluation. Biodistribution and blocking studies of [18F]TZ3108 in male Sprague-Dawley rats demonstrated high brain uptake, which was σ1-specific with no in vivo defluorination. MicroPET studies in cynomolgus macaques showed high brain penetration of [18F]TZ3108; the regional brain distribution was consistent with that of the σ1 receptor. Pseudo-equilibrium in the brain was reached ~ 45 min post-injection. Metabolite analysis of [18F]TZ3108 in NHP blood and rodent blood and brain revealed that ~ 70% parent remained in the plasma of NHPs 60 min post-injection and the major radiometabolite did not cross the blood-brain barrier in rats. In summary, the potent, selective and metabolically stable σ1 specific radioligand [18F]TZ3108 represents a potentially useful PET radioligand for quantifying the σ1 receptor in the brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA