Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
2.
Nat Biotechnol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514799

RESUMEN

Spatially resolved gene expression profiling provides insight into tissue organization and cell-cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference. Starfysh improves the characterization of spatial dynamics in complex tissues using histology images and enables the comparison of niches as spatial hubs across tissues. Integrative analysis of primary estrogen receptor (ER)-positive breast cancer, triple-negative breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led to the identification of spatial hubs with patient- and disease-specific cell type compositions and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC.

3.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014231

RESUMEN

Single-cell genomics has the potential to map cell states and their dynamics in an unbiased way in response to perturbations like disease. However, elucidating the cell-state transitions from healthy to disease requires analyzing data from perturbed samples jointly with unperturbed reference samples. Existing methods for integrating and jointly visualizing single-cell datasets from distinct contexts tend to remove key biological differences or do not correctly harmonize shared mechanisms. We present Decipher, a model that combines variational autoencoders with deep exponential families to reconstruct derailed trajectories (https://github.com/azizilab/decipher). Decipher jointly represents normal and perturbed single-cell RNA-seq datasets, revealing shared and disrupted dynamics. It further introduces a novel approach to visualize data, without the need for methods such as UMAP or TSNE. We demonstrate Decipher on data from acute myeloid leukemia patient bone marrow specimens, showing that it successfully characterizes the divergence from normal hematopoiesis and identifies transcriptional programs that become disrupted in each patient when they acquire NPM1 driver mutations.

4.
Nat Genet ; 55(1): 19-25, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36624340

RESUMEN

Single-cell genomics enables dissection of tumor heterogeneity and molecular underpinnings of drug response at an unprecedented resolution1-11. However, broad clinical application of these methods remains challenging, due to several practical and preanalytical challenges that are incompatible with typical clinical care workflows, namely the need for relatively large, fresh tissue inputs. In the present study, we show that multimodal, single-nucleus (sn)RNA/T cell receptor (TCR) sequencing, spatial transcriptomics and whole-genome sequencing (WGS) are feasible from small, frozen tissues that approximate routinely collected clinical specimens (for example, core needle biopsies). Compared with data from sample-matched fresh tissue, we find a similar quality in the biological outputs of snRNA/TCR-seq data, while reducing artifactual signals and compositional biases introduced by fresh tissue processing. Profiling sequentially collected melanoma samples from a patient treated in the KEYNOTE-001 trial12, we resolved cellular, genomic, spatial and clonotype dynamics that represent molecular patterns of heterogeneous intralesional evolution during anti-programmed cell death protein 1 therapy. To demonstrate applicability to banked biospecimens of rare diseases13, we generated a single-cell atlas of uveal melanoma liver metastasis with matched WGS data. These results show that single-cell genomics from archival, clinical specimens is feasible and provides a framework for translating these methods more broadly to the clinical arena.


Asunto(s)
Genómica , Neoplasias , Humanos , Genómica/métodos , Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Análisis de Secuencia de ARN/métodos , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA