RESUMEN
Real-time monitoring of physiological indicators inside the body is pivotal for contemporary diagnostics and treatments. Implantable electrodes can not only track specific biomarkers but also facilitate therapeutic interventions. By modifying biometric components, implantable electrodes enable in situ metabolite detection in living tissues, notably beneficial in invasive glucose monitoring, which effectively alleviates the self-blood-glucose-managing burden for patients. However, the development of implantable electrochemical electrodes, especially multi-channel sensing devices, still faces challenges: (1) The complexity of direct preparation hinders functionalized or multi-parameter sensing on a small scale. (2) The fine structure of individual electrodes results in low spatial resolution for sensor functionalization. (3) There is limited conductivity due to simple device structures and weakly conductive electrode materials (such as silicon or polymers). To address these challenges, we developed multiple-channel electrochemical microneedle electrode arrays (MCEMEAs) via a separated functionalization and assembly process. Two-dimensional microneedle (2dMN)-based and one-dimensional microneedle (1dMN)-based electrodes were prepared by laser patterning, which were then modified as sensing electrodes by electrochemical deposition and glucose oxidase decoration to achieve separated functionalization and reduce mutual interference. The electrodes were then assembled into 2dMN- and 1dMN-based multi-channel electrochemical arrays (MCEAs), respectively, to avoid damaging functionalized coatings. In vitro and in vivo results demonstrated that the as-prepared MCEAs exhibit excellent transdermal capability, detection sensitivity, selectivity, and reproducibility, which was capable of real-time, in situ glucose concentration monitoring.
Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Animales , Glucosa Oxidasa , Ratas , Humanos , Glucemia/análisis , AgujasRESUMEN
In order to explore the effects of continuous annual crop rotation and fallow on aggregate stability and organic carbon content in red soil, the red soil in sloping farmland was taken as the research object, and the water-stable aggregates and organic carbon content were determined using the wet sieve method and potassium dichromate-concentrated sulfuric acid external heating method, respectively. The changes in soil aggregate stability and organic carbon content under the four treatments of maize-vetch-maize rotation (M-V-M), maize-pea-maize rotation (M-P-M), maize-fallow-maize (M-F-M), and annual fallow (F-F-F) from 2020 to 2022 and the relationships between them were analyzed. The results showed that in 2021 and 2022, the contents of > 2 mm aggregates treated with F-F-F, M-V-M, and M-P-M were significantly increased by 67.01%-100.92%, 29.71%-33.67%, and 29.68%-38.07%, respectively, compared with that treated with M-F-M. In 2021 and 2022, the stability parameters of F-F-F and M-V-M were significantly higher than those of M-F-M (P < 0.05). The content of > 2 mm aggregates, geometric mean diameter (GMD), and mean weight diameter (MWD) under the M-V-M treatment and R0.25 (> 0.25 mm aggregate contents), MWD and > 2 mm aggregate contents under the F-F-F treatment increased with the increase in fallow years, whereas the content of 1-2 mm and < 0.25 mm under the F-F-F treatment decreased with the increase in fallow years. Both green manure rotation and fallow treatment could increase the SOC content, and the SOC content of F-F-F and M-V-M treatment increased with the extension in age. Correlation analysis showed that SOC content was significantly positively correlated with R0.25 and GMD under all treatments. R0.25 and GMD under the F-F-F treatment and GMD and MWD under M-V-M were significantly positively correlated with SOC content. The results showed that continuous annual crop rotation and fallow was beneficial to improve the content of soil macro-aggregates, aggregate stability, and SOC content, which could provide theoretical basis for the implementation of reasonable continuous annual crop rotation and fallow patterns and soil erosion control in red soil areas of sloping farmland in southern China.
RESUMEN
To investigate the effects of crop rotation and fallow on the community composition of arbuscular mycorrhizal fungi (AMF) and the stability of soil aggregates, AMF community and aggregates were measured using Illumina MiSeq high-throughput sequencing and wet screening methods in red soil of sloping farmland. The AMF community and its relationship with soil factors and aggregate stability were studied under the four treatments of vetch rotation corn (V-C), pea rotation corn (P-C), winter fallow corn (F-C), and annual fallow (F-F). The results showed that the aggregate content of >2 mm, R0.25, and MWD in the F-F, V-C, and P-C treatments were significantly higher than those in F-C (P<0.05), and the aggregate content of <0.25 mm was significantly lower than that of F-C (P<0.05). The ACE, Chao1, and Shannon indexes of the F-F treatment were 29.56%, 35.78%, and 45.55% higher than those of the F-C treatment, respectively. Glomus was the dominant genus of AMF communities under all treatments, whereas Scutellospora showed a significant difference among the treatments (P<0.05). PCoA analysis showed that PC1 and PC2 together explained 29.99% and 22.40% of the difference in the AMF community composition, respectively. The correlation analysis showed that there was a significant negative correlation between Scutellospora and alkaline nitrogen (AN) and organic matter (SOM) (P<0.05), a significant positive correlation between Scutellospora and available potassium (AK) (P<0.05), and a significant positive correlation between Glomus and alkaline nitrogen (P<0.05). RDA analysis showed that AMF diversity (Shannon index) and Scutellospora were significantly and positively correlated with aggregate content >2 mm and 2-1 mm, respectively (P<0.05). Therefore, annual fallow and vetch rotation corn were conducive to improving the stability of soil aggregates and changing the composition of the AMF community. The research results provide a theoretical basis and reference for the annual rotation system to improve soil quality and implement a reasonable crop rotation and fallow pattern in southern China.
Asunto(s)
Glomeromycota , Micorrizas , Nitrógeno , Suelo , Zea mays , Producción de CultivosRESUMEN
In an era of data explosion, optical data storage provides an alternative solution for cold data storage due to its energy-saving and cost-effective features. However, its data density is still insufficient for zettabyte-scale cold data storage. Here, a coded aperture-based compressive data page with a compression ratio of ≤0.125 is proposed. Based on two frameworks-weighted nuclear norm minimization (WNNM) and alternating direction method of multipliers (ADMM)-the decoded quality of the compressive data page is ensured by utilizing sparsity priors. In experiments, compressive data pages of a monochromatic photo-array, full-color photo, and dynamic video are accurately decoded.
RESUMEN
Hesperetin is a natural flavonoid with many biological activities. In view of hyperuricemia treatment, the effects of hesperetin in vivo and in vitro, and the underlying mechanisms, were explored. Hyperuricemia models induced by yeast extract (YE) or potassium oxonate (PO) in mice were created, as were models based on hypoxanthine and xanthine oxidase (XOD) in L-O2 cells and sodium urate in HEK293T cells. Serum level of uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) were reduced significantly after hesperetin treatment in vivo. Hesperetin provided hepatoprotective effects and inhibited xanthine oxidase activity markedly, altered the level of malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and catalase (CAT), downregulated the XOD protein expression, toll-like receptor (TLR)4, nucleotide binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, interleukin-18 (IL-18), upregulated forkhead box O3a (FOXO3a), manganese superoxide dismutase (MnSOD) in a uric acid-synthesis model in mice. Protein expression of organic anion transporter 1 (OAT1), OAT3, organic cationic transporter 1 (OCT1), and OCT2 was upregulated by hesperetin intervention in a uric acid excretion model in mice. Our results proposal that hesperetin exerts a uric acid-lowering effect through inhibiting xanthine oxidase activity and protein expression, intervening in the TLR4-NLRP3 inflammasome signaling pathway, and up-regulating expression of FOXO3a, MnSOD, OAT1, OAT3, OCT1, and OCT2 proteins. Thus, hesperetin could be a promising therapeutic agent against hyperuricemia.
RESUMEN
The present study aimed to determine the capsular serotype distribution and antimicrobial drug resistance patterns of Haemophilus influenzae from children in the Kunming region of China. This information could guide policymakers in clinical treatment. In the present study, H. influenzae isolates were tested for their serotypes, antimicrobial susceptibility pattern, and presence of ß-lactamases. One-hundred forty-eight H. influenzae strains isolated from children 0-2 years old were investigated for capsular types by glass slide agglutination and molecular methods, and biotyped by the biochemical reactions. The drug resistance-encoding genes TEM-1, ROB-1, and the ftsI gene mutations PBP3-3, and PBP3-BLN were detected with real-time quantitative polymerase chain reaction (qPCR). The prevalence of ß-lactamase-producing strains (60.3%) was significantly higher (p < 0.05) than non-enzyme-producing strains. ß-Lactamase-producing strains were multidrug resistant to various antibiotics such as ampicillin, tetracycline, sulfamethoxazole/trimethoprim, chloramphenicol, cefuroxime, and cefaclor. Among ß-lactamase-producing strains, the detection rates of the TEM-1, PBP3-BLN, PBP3-s, and ROB-1 were 54.1%, 18.9%, 11.8%, and 6.9%, respectively. The biotyping results show that most H. influenzae strains were of type II and III. Non-typeable H. influenzae (NTHi) accounted for 89.3% of the strains. NTHi strains were the most prevalent in this region; most belonged to biological types II and III. ß-Lactamase-positive ampi-cillin-resistant (BLPAR) strains were prevalent among H. influenzae isolates in this region.
Asunto(s)
Infecciones por Haemophilus , Haemophilus influenzae , Niño , Humanos , Recién Nacido , Lactante , Preescolar , Serogrupo , Haemophilus influenzae/genética , Infecciones por Haemophilus/tratamiento farmacológico , Infecciones por Haemophilus/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana , Resistencia a MedicamentosRESUMEN
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD), peculiarly nonalcoholic steatohepatitis (NASH), has become the main cause of liver transplantation and liver-related death. However, the US Food and Drug Administration has not approved a specific medication for treating NASH. Neferine (NEF), a natural bisbenzylisoquinoline alkaloid separated from the traditional Chinese medicine Nelumbinis plumula, has a variety of pharmacological properties, especially on metabolic diseases. Nevertheless, the anti-NASH effect and mechanisms of NEF remain unclear. PURPOSE: This study aimed to investigate the amelioration of NEF on NASH and the potential mechanisms. STUDY DESIGN: HepG2 cells, hepatic stellate cells (HSCs) and high-fat diet (HFD)+carbon tetrachloride (CCl4) induced C57BL/6 mice were used to observe the effect of NEF against NASH and investigate the engaged mechanism. METHODS: HSCs and HepG2 cells stimulated by oleic acid (OA) were treated with NEF. C57BL/6 mice were fed with HFD+CCl4 to induce NASH mouse model and treated with or without NEF (5 mg/kg or 10 mg/kg, once daily, i.p) for 4 weeks. RESULTS: NEF significantly attenuated the accumulation of lipid droplets, intracellular triglyceride (TG) levels and hepatocytes apoptosis in OA-exposed HepG2 cells. NEF not only enhanced the AMPK and ACC phosphorylation in OA-stimulated HepG2 cells, but also reduced inflammatory response and fibrosis in lipopolysaccharide (LPS)-stimulated HepG2 and in LX-2, respectively. In HFD+CCl4-induced NASH mice, pathological staining confirmed NEF treatment mitigated hepatic lipid deposition, inflammatory cell infiltration as well as hepatic fibrosis. Furthermore, the liver weight, serum and hepatic TG and total cholesterol (TC) and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were decreased compared with the model group. HFD+CCl4 also induced the upregulation of specific proteins and genes associated to inflammation (ILs, TNF-α, NLRP3, ASC, CCL2 and CXCL10) and hepatic fibrosis (collagens, α-SMA, TGF-ß and TIPM1), which were also suppressed by NEF treatment. CONCLUSION: Our results demonstrated that NEF played a protective role in hepatic steatosis via the regulation of AMPK pathways, which may serve as an attractive candidate for a potential novel strategy on prevention and treatment of NASH.
Asunto(s)
Bencilisoquinolinas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos C57BL , Hígado , Bencilisoquinolinas/farmacología , Cirrosis Hepática/tratamiento farmacológico , Dieta Alta en GrasaRESUMEN
Benign prostatic hyperplasia (BPH) is a chronic disease that affects the quality of life of older males. Sinomenine hydrochloride (SIN) is the major bioactive alkaloid isolated from the roots of the traditional Chinese medicinal plant Sinomenium acutum Rehderett Wilson. We wondered if the SIN administration exerted a regulatory effect on BPH and its potential mechanism of action. Mice with testosterone propionate-induced BPH subjected to bilateral orchiectomy were employed for in vivo experiments. A human BPH cell line (BPH-1) was employed for in vitro experiments. SIN administration inhibited the proliferation of BPH-1 cells (p < 0.05) by regulating the expression of androgen-related proteins (steroid 5-alpha reductase 2 (SRD5A2), androgen receptors, prostate-specific antigen), apoptosis-related proteins (B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax)) and proliferation-related proteins (proliferating cell nuclear antigen (PCNA), mammalian target of rapamycin, inducible nitric oxide synthase) in vitro. SIN administration decreased the prostate-gland weight coefficient (p < 0.05) and improved the histological status of mice suffering from BPH. The regulatory effects of SIN administration on SRD5A2, an apoptosis-related protein (Bcl-2), and proliferation-related proteins (PCNA, matrix metalloproteinase-2) were consistent with in vitro data. SIN exerted a therapeutic effect against BPH probably related to lowering the SRD5A2 level and regulating the balance between the proliferation and apoptosis of cells. Our results provide an important theoretical basis for the development of plant medicines for BPH therapy.
Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Ratones , Apoptosis , Proliferación Celular , Colestenona 5 alfa-Reductasa/metabolismo , Metaloproteinasa 2 de la Matriz , Proteínas de la Membrana , Extractos Vegetales/farmacología , Antígeno Nuclear de Célula en Proliferación , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Calidad de Vida , Testosterona/farmacologíaRESUMEN
Objectives: This study aimed to investigate the potential effects of wasp venom (WV) from Vespa magnifica on antithrombosis in rats with inferior vena cava (IVC) thrombosis. Materials and Methods: The thrombosis rat model was established by improving the IVC stenosis, in which rats were subjected to IVC ligation for 75 min. Rats were administered argatroban (IP) or WV (s.c.) for 4 hr after IVC thrombosis. The weight, inhibition rate, and pathological morphology of the thrombosis induced by IVC ligation and the variation in four coagulation parameters, coagulation factors, and CD61+CD62P+ were simultaneously determined in IVC rats. Results: The thrombus formed as a result of IVC ligation was stable. Compared with the control group, the weight of the thrombus was significantly reduced in the argatroban group. Thrombus weight was reduced by treatment with 0.6, 0.2, and 0.05 mg/kg WV, with inhibition rates of 52.19%, 35.32%, and 28.98%, respectively. Inflammatory cells adhered to and infiltrated the vessel wall in the IVC group more than in the sham group. However, the pathological morphology and CD61+CD62P+ of the WV treatment groups tended to be normal. Conclusion: We improved the model of IVC thrombosis to be suitable for evaluation of antithrombotic drugs. Our findings demonstrated that WV could inhibit IVC thrombosis associated with reducing coagulation factors V and CD61+CD62p expression in rats.
RESUMEN
CONTEXT: Ferulic acid ethyl ester (FAEE) is abundant in Ligusticum chuanxiong Hort. (Apiaceae) and grains, and possesses diverse biological activities; but the effects of FAEE on osteoporosis has not been reported. OBJECTIVE: This study investigated whether FAEE can attenuate osteoclastogenesis and relieve ovariectomy-induced osteoporosis via attenuating mitogen-activated protein kinase (MAPK). MATERIALS AND METHODS: We stimulated RAW 264.7 cells with receptor activator of NF-κB ligand (RANKL) followed by FAEE. The roles of FAEE in osteoclast production and osteogenic resorption of mature osteoclasts were evaluated by tartrate resistant acid phosphatase (TRAP) staining, expression of osteoclast-specific genes, proteins and MAPK. Ovariectomized (OVX) female Sprague-Dawley rats were administered FAEE (20 mg/kg/day) for 12 weeks to explore its potential in vivo, and then histology was undertaken in combination with cytokines analyses. RESULTS: FAEE suppressed RANKL-induced osteoclast formation (96 ± 0.88 vs. 15 ± 1.68) by suppressing the expression of osteoclast-specific genes, proteins and MAPK signalling pathway related proteins (p-ERK/ERK, p-JNK/JNK and p-P38/P38) in vitro. In addition, OVX rats exposed to FAEE maintained their normal calcium (Ca) (2.72 ± 0.02 vs. 2.63 ± 0.03, p < 0.05) balance, increased oestradiol levels (498.3 ± 9.43 vs. 398.7 ± 22.06, p < 0.05), simultaneously reduced levels of bone mineral density (BMD) (0.159 ± 0.0016 vs. 0.153 ± 0.0025, p < 0.05) and bone mineral content (BMC) (0.8 ± 0.0158 vs. 0.68 ± 0.0291, p < 0.01). DISCUSSION AND CONCLUSIONS: These findings suggested that FAEE could be used to ameliorate osteoporosis by the MAPK signalling pathway, suggesting that FAEE could be a potential therapeutic candidate for osteoporosis.
Asunto(s)
Ácidos Cafeicos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis Posmenopáusica/prevención & control , Animales , Densidad Ósea/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ovariectomía , Células RAW 264.7 , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: Capsule of alkaloids from leaf of Alstonia scholaris (CALAS) is a new investigational botanical drug (No. 2011L01436) for respiratory disease. Clinical population pharmacokinetics (PK), metabolomics and therapeutic data are essential to guide dosing in patients. Previous research has demonstrated the potential therapeutic effect of CALAS on acute bronchitis. Further clinical trial data are needed to verify its clinical efficacy, pharmacokinetics behavior, and influence of dosage and other factors. PURPOSE: To verify the clinical efficacy and explore the potential biomarkers related to CALAS treatment for acute bronchitis. MATERIALS AND METHODS: Oral CALAS was assessed in a randomized, double-blind, placebo-controlled trial. Fifty-five eligible patients were randomly assigned to four cohorts to receive 20, 40 or 80 mg, of CALAS three times daily for seven days, or placebo. Each CALAS cohort included 15 subjects, and the placebo group included 10 subjects. A population PK model of CALAS was developed using plasma with four major alkaloid components. Metabolomics analysis was performed to identify biomarkers correlated with the therapeutic effect of CALAS, and efficacy and safety were assessed based on clinical symptoms and adverse events. RESULTS: The symptoms of acute bronchitis were alleviated by CALAS treatment without serious adverse events or clinically significant changes in vital signs, electrocardiography or upper abdominal Doppler ultrasonography. Moreover, one compartment model with first-order absorption showed that an increase in aspartate transaminase will reduce the clearance (CL) of scholaricine, and picrinine CL was inversely proportional to body mass index, while 19-epischolaricine and vallesamine CL increased with aging. The serum samples from acute bronchitis patients at different time points were analyzed using UPLC-QTOF in combination with the orthogonal projection to latent structures-discriminant analysis, which indicated higher levels of lysophosphatidylcholines, lysophosphatidylethanolamines and amino acids with CALAS treatment than with placebo. CONCLUSION: This is the first study to evaluate the clinical efficacy and explored the potential biomarkers related to CALAS therapeutic mechanism of acute bronchitis by means of clinical trial combined the metabolomics study. This exploratory study provides a basis for further research on clinical efficacy and optimal dosing regimens based on pharmacokinetics behavior. Additional acute bronchitis patients and CALAS PK samples collected in future studies may be used to improve model performance and maximize its clinical value.
RESUMEN
In this work, a new type of UiO-66 incorporated polysulfone (PSf) ultrafiltration (UF) membranes was fabricated to enhance antifouling properties and heavy metal ions removal efficiency. The UF membranes incorporating different loadings of the UiO-66 filler were prepared via the classical phase inversion process. These membranes unveiled enhanced hydrophilicity, porosity, water uptake, zeta potential, mechanical strength, permeability, and HA removal ratios due to the incorporation of hydrophilic UiO-66 fillers. Particularly, HA rejection ratios were observed to be approximately 93% for all the modified membranes, which was attributed to electrostatic repulsion interactions between the hydrophilic groups of HA and UiO-66. Moreover, the antifouling abilities of the modified membranes were evaluated and found to be much better with a high flux recovery ratio (FRR) of about 88% when compared to the blank PSf membrane (only around 34%). Moreover, the UiO-66 incorporated membranes were highly-effective in the removal of contaminants like heavy metal ions (Sr2+, Pb2+, Cd2+, and Cr6+) and HA at the same time. Overall, the PSf UF membranes incorporating UiO-66 opened up a new avenue to enhance the membrane hydrophilicity, permeability, antifouling properties as well as heavy metal ions removal abilities.
Asunto(s)
Estructuras Metalorgánicas , Metales Pesados , Iones , Membranas Artificiales , Ácidos Ftálicos , UltrafiltraciónRESUMEN
Hyperuricemia is a metabolic disease caused by impaired uric acid (UA) metabolism. Ellagic acid (EA) is a natural small-molecule polyphenolic compound with known antioxidative and anti-inflammatory properties. Here, we evaluated the regulatory effects of EA on hyperuricemia and explored the underlying mechanisms. We found that EA is an effective xanthine oxidase (XOD) inhibitor (IC50 = 165.6 µmol/L) and superoxide anion scavenger (IC50 = 27.66 µmol/L). EA (5 and 10 µmol/L) treatment significantly and dose-dependently reduced UA levels in L-O2 cells; meanwhile, intraperitoneal EA administration (50 and 100 mg/kg) also significantly reduced serum XOD activity and UA levels in hyperuricemic mice and markedly improved their liver and kidney histopathology. EA treatment significantly reduced the degree of foot edema and inhibited the expression of NLPR3 pathway-related proteins in foot tissue of monosodium urate (MSU)-treated mice. The anti-inflammatory effect was also observed in lipopolysaccharide-stimulated RAW-264.7 cells. Furthermore, EA significantly inhibited the expressions of XOD and NLRP3 pathway-related proteins (TLR4, p-p65, caspase-1, TNF-α, and IL-18) in vitro and in vivo. Our results indicated that EA exerts ameliorative effects in experimental hyperuricemia and foot edema via regulating the NLRP3 signaling pathway and represents a promising therapeutic option for the management of hyperuricemia.
Asunto(s)
Hiperuricemia , Animales , Ácido Elágico , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/genética , Inflamasomas , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Xantina OxidasaRESUMEN
Enterovirus A71 (EV-A71) inactivated vaccines have been widely inoculated among children in Kunming City after it was approved. However, there was a large-scale outbreak of Enteroviruses (EVs) infection in Kunming, 2018. The epidemiological characteristics of HFMD and EVs were analysed during 2008-2018, which are before and three years after EV-A71 vaccine starting to use. The changes in infection spectrum were also investigated, especially for severe HFMD in 2018. The incidence of EV-A71 decreased dramatically after the EV-A71 vaccine starting use. The proportion of non-CV-A16/EV-A71 EVs positive patients raised to 77.17-85.82%, while, EV-A71 and CV-A16 only accounted for 3.41-7.24% and 6.94-19.42% in 2017 and 2018, respectively. CV-A6 was the most important causative agent in all clinical symptoms (severe HFMD, HFMD, Herpangina and fever), accounting from 42.13% to 62.33%. EV-A71 only account for 0.36-2.05%. In severe HFMD, CV-A6 (62.33%), CV-A10 (11.64%), and CV-A16 (10.96%) were the major causative agent in 2018. EV-A71 inactivated vaccine has a good protective effect against EV-A71 and induced EVs infection spectrum changefully. EV-A71 vaccine has no or insignificant cross-protection effect on CV-A6, CV-A10, and CV-A16. Herein, developing 4-valent combined vaccines is urgently needed.
Asunto(s)
Enterovirus Humano A/inmunología , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/prevención & control , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/prevención & control , Vacunas de Productos Inactivados/inmunología , Adolescente , Niño , Preescolar , China/epidemiología , Brotes de Enfermedades , Enterovirus Humano A/clasificación , Enterovirus Humano A/genética , Infecciones por Enterovirus/inmunología , Heces/microbiología , Femenino , Enfermedad de Boca, Mano y Pie/inmunología , Humanos , Lactante , Recién Nacido , Pacientes Internos , Masculino , ARN Viral , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serogrupo , Centros de Atención TerciariaRESUMEN
Metrnl is a newly identified secreted protein highly expressed in the intestinal epithelium. This study aimed to explore the role and mechanism of intestinal epithelial Metrnl in ulcerative colitis. Metrnl-/- (intestinal epithelial cell-specific Metrnl knockout) mice did not display any phenotypes of colitis under basal conditions. However, under administration of 3% dextran sodium sulfate (DSS) drinking water, colitis was more severe in Metrnl-/- mice than in WT mice, as indicated by comparisons of body weight loss, the presence of occult or gross blood per rectum, stool consistency, shrinkage in the colon, intestinal damage, and serum levels of inflammatory factors. DSS-induced colitis activated autophagy in the colon. This activation was partially inhibited by intestinal epithelial Metrnl deficiency, as indicated by a decrease in Beclin-1 and LC3-II/I and an increase in p62 in DSS-treated Metrnl-/- mice compared with WT mice. These phenomena were further confirmed by observation of autophagosomes and immunofluorescence staining for LC3 in epithelial cells. The autophagy-related AMPK-mTOR-p70S6K pathway was also activated in DSS-induced colitis, and this pathway was partially blocked by intestinal epithelial Metrnl deficiency, as indicated by a decrease in AMPK phosphorylation and an increase in mTOR and p70S6K phosphorylation in DSS-treated Metrnl-/- mice compared with WT mice. Therefore, Metrnl deficiency deteriorated ulcerative colitis at least partially through inhibition of autophagy via the AMPK-mTOR-p70S6K pathway, suggesting that Metrnl is a therapeutic target for ulcerative colitis.
Asunto(s)
Autofagia , Colitis Ulcerosa/metabolismo , Células Epiteliales/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Administración Oral , Animales , Células CACO-2 , Células Cultivadas , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Sulfato de Dextran/administración & dosificación , Células Epiteliales/patología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Large-diameter, tall-stature, and big-crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence play an important role in climate change mitigation strategies. Here, we hypothesized that the effects of large-diameter, tall-stature, and big-crown trees overrule the effects of species richness and remaining trees attributes on aboveground biomass in tropical forests (i.e., we term the "big-sized trees hypothesis"). Specifically, we assessed the importance of: (a) the "top 1% big-sized trees effect" relative to species richness; (b) the "99% remaining trees effect" relative to species richness; and (c) the "top 1% big-sized trees effect" relative to the "99% remaining trees effect" and species richness on aboveground biomass. Using environmental factor and forest inventory datasets from 712 tropical forest plots in Hainan Island of southern China, we tested several structural equation models for disentangling the relative effects of big-sized trees, remaining trees attributes, and species richness on aboveground biomass, while considering for the full (indirect effects only) and partial (direct and indirect effects) mediation effects of climatic and soil conditions, as well as interactions between species richness and trees attributes. We found that top 1% big-sized trees attributes strongly increased aboveground biomass (i.e., explained 55%-70% of the accounted variation) compared to species richness (2%-18%) and 99% remaining trees attributes (6%-10%). In addition, species richness increased aboveground biomass indirectly via increasing big-sized trees but via decreasing remaining trees. Hence, we show that the "big-sized trees effect" overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big-sized trees may be more susceptible to atmospheric drought. We argue that the effects of big-sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning.
Asunto(s)
Biodiversidad , Árboles , Biomasa , China , Cambio Climático , Clima TropicalRESUMEN
Most of the previous studies have shown that the relationship between functional diversity and aboveground biomass is unpredictable in natural tropical forests, and hence also contrary to the predictions of niche complementarity effect. However, the direct and indirect effects of functional diversity on aboveground biomass via tree crown complementarity in natural forests remain unclear, and this potential ecological mechanism is yet to be understood across large-scale ecological gradients. Here, we hypothesized that tree crown complementarity would link positive functional diversity and aboveground biomass due to increasing species coexistence through efficient capture and use of available resources in natural tropical forests along large-scale ecological gradients. We quantified individual tree crown variation, functional divergence of tree maximum height, and aboveground biomass using data from 187,748 trees, in addition to the quantifications of climatic water availability and soil fertility across 712 tropical forests plots in Hainan Island of Southern China. We used structural equation modeling to test the tree crown complementarity hypothesis. Aboveground biomass increased directly with increasing functional diversity, individual tree crown variation and climatic water availability. As such, functional diversity enhanced individual tree crown variation, thereby increased aboveground biomass indirectly via individual tree crown variation. Additional positive effects of climatic water availability and soil fertility on aboveground biomass were accounted indirectly via increasing individual tree crown variation and/or functional diversity. This study shows that tree crown complementarity mediates the positive effect of functional diversity on aboveground biomass through light capture and use along large-scale ecological gradients in natural forests. This study also mechanistically shows that tree crown complementarity increases species coexistence through maintenance of functional diversity, which in turn enhances aboveground biomass in natural tropical forests. Hence, managing natural forests with the aim of increasing tree crown complementarity holds promise for enhancing carbon storage while conserving biodiversity in functionally-diverse communities.
Asunto(s)
Biodiversidad , Biomasa , Bosques , Árboles/fisiología , ChinaRESUMEN
Climatic water availability is a key spatial driver of species distribution patterns in natural forests. Yet, we do not fully understand the importance of climatic water availability relative to temperature, and climate relative to edaphic factors for multiple biotic attributes across large-scale elevational gradients in natural forests. Here, we modelled multiple abiotic factors (elevation, climate, and edaphic factors) with each of the taxonomic-related (Shannon's species diversity, species richness, species evenness, and Simpson's dominance) and tree size or biomass-related (individual tree size variation, functional dominance and divergence, and aboveground biomass) biotic attributes through boosted regression trees (BRT) models, using biophysical data from 247,691 trees across 907 plots in tropical forests in Hainan Island of Southern China. The tested multiple abiotic factors explained simultaneously 43, 50, 36, 45, 37, 50, 17 and 46%, respectively, of the variations in Shannon's species diversity, species richness, species evenness, Simpson's dominance, individual tree size variation, functional dominance, functional divergence and aboveground biomass. After the large influences of elevation (i.e. 30.43 to 62.83%), climatic water availability accounted for most (i.e. 15.52 to 25.30%) of the variations in all biotic attributes. Beside the increasing trend with elevational gradients, taxonomic diversity increased strongly with climatic water availability whereas tree size or biomass-related biotic attributes showed strong decreasing and increasing trends. Tree size or biomass-related rather than taxonomic-related biotic attributes also decreased apparently with mean annual temperature. Most of the biotic attributes monotonically increased with soil fertility but decreased with soil pH, whereas soil textural properties had mostly negligible influences. This study strongly reveals that future climate change (i.e. a decrease in climatic water availability with an increase in mean annual temperature) is thus likely to have a substantial influence on the biotic attributes in the studied tropical forests across large-scale elevational gradients.
RESUMEN
Though evaluation and analysis on the relevant literatures at home and abroad in recent years, the total number of retrieved literature was 2 664. According to the inclusion criteria and exclusion criteria,the literatures were screened out, and the results were as followsï¼374 literatures. To analyse the advantages and evidence of Chinese medicine in the prevention and treatment of adult acute tonsillitis. It is found to be effective, convenient and practical for the treatment of acute tonsillitis by traditional Chinese medicine (TCM) like treatment according to syndrome differentiation, Chinese patent drug, self Chinese medicine prescription and external treatment. TCM has obvious advantages in the prevention and treatment of acute tonsillitis, has the function of supplementing or substituting antibiotics, and has the function of regulating the defense function of organism.
Asunto(s)
Medicina Tradicional China , Tonsilitis/prevención & control , Tonsilitis/terapia , Adulto , Medicamentos Herbarios Chinos/uso terapéutico , HumanosRESUMEN
G9P[8] rotavirus A (RVA) has been identified as the predominant genotype circulating in Yunnan, China. To elucidate the molecular characteristics of its genetic composition at the whole-genome level, the genomes of 12 strains isolated from paediatric patients with diarrhoea were fully sequenced and characterized. Eleven of the 12 strains were genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, which is closely related to the Wa-like genotype 1 constellation. In contrast, one strain was genotyped as G9-P[8]-I1-R1-C1-M1-A1-N2-T1-E1-H1, with the NSP2 gene characterized as a DS-1 like genotype. Bayesian phylogenetic analysis indicated that G9 strains had emerged in 1932 with an estimated average evolutionary rate of 1.63×10-3 substitutions/site/year. Considering the high prevalence and fast evolutionary rate of G9P[8] rotaviruses, our results suggest that G9P[8] RVA should be strictly monitored in China.