Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Metabolites ; 14(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39057706

RESUMEN

Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39009444

RESUMEN

Stable isotope-resolved metabolomics delineates reprogrammed intersecting metabolic networks in human cancers. Knowledge gained from in vivo patient studies provides the "benchmark" for cancer models to recapitulate. It is particularly difficult to model patients' tumor microenvironment (TME) with its complex cell-cell/cell-matrix interactions, which shapes metabolic reprogramming crucial to cancer development/drug resistance. Patient-derived organotypic tissue cultures (PD-OTCs) represent a unique model that retains an individual patient's TME. PD-OTCs of non-small-cell lung cancer better recapitulated the in vivo metabolic reprogramming of patient tumors than the patient-derived tumor xenograft (PDTX), while enabling interrogation of immunometabolic response to modulators and TME-dependent resistance development. Patient-derived organoids (PDOs) are also good models for reconstituting TME-dependent metabolic reprogramming and for evaluating therapeutic responses. Single-cell based 'omics on combinations of PD-OTC and PDO models will afford an unprecedented understanding on TME dependence of human cancer metabolic reprogramming, which should translate into the identification of novel metabolic targets for regulating TME interactions and drug resistance.

3.
Metabolomics ; 20(4): 87, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068202

RESUMEN

INTRODUCTION: Stable isotope tracers have been increasingly used in preclinical cancer model systems, including cell culture and mouse xenografts, to probe the altered metabolism of a variety of cancers, such as accelerated glycolysis and glutaminolysis and generation of oncometabolites. Comparatively little has been reported on the fidelity of the different preclinical model systems in recapitulating the aberrant metabolism of tumors. OBJECTIVES: We have been developing several different experimental model systems for systems biochemistry analyses of non-small cell lung cancer (NSCLC1) using patient-derived tissues to evaluate appropriate models for metabolic and phenotypic analyses. METHODS: To address the issue of fidelity, we have carried out a detailed Stable Isotope-Resolved Metabolomics study of freshly resected tissue slices, mouse patient derived xenografts (PDXs), and cells derived from a single patient using both 13C6-glucose and 13C5,15N2-glutamine tracers. RESULTS: Although we found similar glucose metabolism in the three models, glutamine utilization was markedly higher in the isolated cell culture and in cell culture-derived xenografts compared with the primary cancer tissue or direct tissue xenografts (PDX). CONCLUSIONS: This suggests that caution is needed in interpreting cancer biochemistry using patient-derived cancer cells in vitro or in xenografts, even at very early passage, and that direct analysis of patient derived tissue slices provides the optimal model for ex vivo metabolomics. Further research is needed to determine the generality of these observations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Glutamina , Neoplasias Pulmonares , Metabolómica , Glutamina/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Animales , Metabolómica/métodos , Ratones , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Isótopos de Carbono/metabolismo , Fenotipo , Glucosa/metabolismo , Isótopos de Nitrógeno/metabolismo
4.
Nat Commun ; 15(1): 2803, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555305

RESUMEN

Myeloid derived suppressor cells (MDSCs) are key regulators of immune responses and correlate with poor outcomes in hematologic malignancies. Here, we identify that MDSC mitochondrial fitness controls the efficacy of doxorubicin chemotherapy in a preclinical lymphoma model. Mechanistically, we show that triggering STAT3 signaling via ß2-adrenergic receptor (ß2-AR) activation leads to improved MDSC function through metabolic reprograming, marked by sustained mitochondrial respiration and higher ATP generation which reduces AMPK signaling, altering energy metabolism. Furthermore, induced STAT3 signaling in MDSCs enhances glutamine consumption via the TCA cycle. Metabolized glutamine generates itaconate which downregulates mitochondrial reactive oxygen species via regulation of Nrf2 and the oxidative stress response, enhancing MDSC survival. Using ß2-AR blockade, we target the STAT3 pathway and ATP and itaconate metabolism, disrupting ATP generation by the electron transport chain and decreasing itaconate generation causing diminished MDSC mitochondrial fitness. This disruption increases the response to doxorubicin and could be tested clinically.


Asunto(s)
Neoplasias Hematológicas , Células Supresoras de Origen Mieloide , Succinatos , Humanos , Glutamina/metabolismo , Neoplasias Hematológicas/metabolismo , Adenosina Trifosfato/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/metabolismo
5.
Biomed Opt Express ; 14(8): 4065-4079, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37799678

RESUMEN

To enable non-destructive metabolic characterizations on in vitro cancer cells and organotypic tumor models for therapeutic studies in an easy-to-access way, we report a highly portable optical spectroscopic assay for simultaneous measurement of glucose uptake and mitochondrial function on various cancer models with high sensitivity. Well-established breast cancer cell lines (MCF-7 and MDA-MB-231) were used to validate the optical spectroscopic assay for metabolic characterizations, while fresh tumor samples harvested from both animals and human cancer patients were used to test the feasibility of our optical metabolic assay for non-destructive measurement of key metabolic parameters on organotypic tumor slices. Our optical metabolic assay captured that MCF-7 cells had higher mitochondrial metabolism, but lower glucose uptake compared to the MDA-MB-231 cells, which is consistent with our microscopy imaging and flow cytometry data, as well as the published Seahorse Assay data. Moreover, we demonstrated that our optical assay could non-destructively measure both glucose uptake and mitochondrial metabolism on the same cancer cell samples at one time, which remains challenging by existing metabolic tools. Our pilot tests on thin fresh tumor slices showed that our optical assay captured increased metabolic activities in tumors compared to normal tissues. Our non-destructive optical metabolic assay provides a cost-effective way for future longitudinal therapeutic studies using patient-derived organotypic fresh tumor slices through the lens of tumor energetics, which will significantly advance translational cancer research.

6.
Nat Metab ; 5(8): 1423-1439, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550596

RESUMEN

Robust and effective T cell immune surveillance and cancer immunotherapy require proper allocation of metabolic resources to sustain energetically costly processes, including growth and cytokine production. Here, we show that asparagine (Asn) restriction on CD8+ T cells exerted opposing effects during activation (early phase) and differentiation (late phase) following T cell activation. Asn restriction suppressed activation and cell cycle entry in the early phase while rapidly engaging the nuclear factor erythroid 2-related factor 2 (NRF2)-dependent stress response, conferring robust proliferation and effector function on CD8+ T cells during differentiation. Mechanistically, NRF2 activation in CD8+ T cells conferred by Asn restriction rewired the metabolic program by reducing the overall glucose and glutamine consumption but increasing intracellular nucleotides to promote proliferation. Accordingly, Asn restriction or NRF2 activation potentiated the T cell-mediated antitumoral response in preclinical animal models, suggesting that Asn restriction is a promising and clinically relevant strategy to enhance cancer immunotherapy. Our study revealed Asn as a critical metabolic node in directing the stress signaling to shape T cell metabolic fitness and effector functions.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Asparagina/metabolismo , Glucosa/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
7.
Metabolites ; 13(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37512481

RESUMEN

Past chemopreventive human trials on dietary selenium supplements produced controversial outcomes. They largely employed selenomethionine (SeM)-based diets. SeM was less toxic than selenite or methylseleninic acid (MSeA) to lung cancer cells. We thus investigated the toxic action of these Se agents in two non-small cell lung cancer (NSCLC) cell lines and ex vivo organotypic cultures (OTC) of NSCLC patient lung tissues. Stable isotope-resolved metabolomics (SIRM) using 13C6-glucose and 13C5,15N2-glutamine tracers with gene knockdowns were employed to examine metabolic dysregulations associated with cell type- and treatment-dependent phenotypic changes. Inhibition of key anaplerotic processes, pyruvate carboxylation (PyC) and glutaminolysis were elicited by exposure to MSeA and selenite but not by SeM. They were accompanied by distinct anabolic dysregulation and reflected cell type-dependent changes in proliferation/death/cell cycle arrest. NSCLC OTC showed similar responses of PyC and/or glutaminolysis to the three agents, which correlated with tissue damages. Altogether, we found differential perturbations in anaplerosis-fueled anabolic pathways to underlie the distinct anti-cancer actions of the three Se agents, which could also explain the failure of SeM-based chemoprevention trials.

8.
J Biol Chem ; 298(12): 102586, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36223837

RESUMEN

Metabolic networks are complex, intersecting, and composed of numerous enzyme-catalyzed biochemical reactions that transfer various molecular moieties among metabolites. Thus, robust reconstruction of metabolic networks requires metabolite moieties to be tracked, which cannot be readily achieved with mass spectrometry (MS) alone. We previously developed an Ion Chromatography-ultrahigh resolution-MS1/data independent-MS2 method to track the simultaneous incorporation of the heavy isotopes 13C and 15N into the moieties of purine/pyrimidine nucleotides in mammalian cells. Ultrahigh resolution-MS1 resolves and counts multiple tracer atoms in intact metabolites, while data independent-tandem MS (MS2) determines isotopic enrichment in their moieties without concern for the numerous mass isotopologue source ions to be fragmented. Together, they enabled rigorous MS-based reconstruction of metabolic networks at specific enzyme levels. We have expanded this approach to trace the labeled atom fate of [13C6]-glucose in 3D A549 spheroids in response to the anticancer agent selenite and that of [13C5,15N2]-glutamine in 2D BEAS-2B cells in response to arsenite transformation. We deduced altered activities of specific enzymes in the Krebs cycle, pentose phosphate pathway, gluconeogenesis, and UDP-GlcNAc synthesis pathways elicited by the stressors. These metabolic details help elucidate the resistance mechanism of 3D versus 2D A549 cultures to selenite and metabolic reprogramming that can mediate the transformation of BEAS-2B cells by arsenite.


Asunto(s)
Arsenitos , Ácido Selenioso , Arsenitos/farmacología , Isótopos de Carbono/química , Marcaje Isotópico/métodos , Redes y Vías Metabólicas , Metabolómica/métodos , Espectrometría de Masas en Tándem , Humanos
9.
Nat Metab ; 4(10): 1322-1335, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36192601

RESUMEN

γ-Aminobutyrate (GAB), the biochemical form of (GABA) γ-aminobutyric acid, participates in shaping physiological processes, including the immune response. How GAB metabolism is controlled to mediate such functions remains elusive. Here we show that GAB is one of the most abundant metabolites in CD4+ T helper 17 (TH17) and induced T regulatory (iTreg) cells. GAB functions as a bioenergetic and signalling gatekeeper by reciprocally controlling pro-inflammatory TH17 cell and anti-inflammatory iTreg cell differentiation through distinct mechanisms. 4-Aminobutyrate aminotransferase (ABAT) funnels GAB into the tricarboxylic acid (TCA) cycle to maximize carbon allocation in promoting TH17 cell differentiation. By contrast, the absence of ABAT activity in iTreg cells enables GAB to be exported to the extracellular environment where it acts as an autocrine signalling metabolite that promotes iTreg cell differentiation. Accordingly, ablation of ABAT activity in T cells protects against experimental autoimmune encephalomyelitis (EAE) progression. Conversely, ablation of GABAA receptor in T cells worsens EAE. Our results suggest that the cell-autonomous control of GAB on CD4+ T cells is bimodal and consists of the sequential action of two processes, ABAT-dependent mitochondrial anaplerosis and the receptor-dependent signalling response, both of which are required for T cell-mediated inflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Células Th17 , Animales , Células Th17/metabolismo , 4-Aminobutirato Transaminasa/metabolismo , Receptores de GABA-A/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Inflamación/metabolismo , Antiinflamatorios/farmacología , Metabolismo Energético , Aminobutiratos/metabolismo , Carbono/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácidos Tricarboxílicos/metabolismo
10.
J Immunol ; 209(9): 1674-1690, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150727

RESUMEN

Immunomodulatory (IM) metabolic reprogramming in macrophages (Mϕs) is fundamental to immune function. However, limited information is available for human Mϕs, particularly in response plasticity, which is critical to understanding the variable efficacy of immunotherapies in cancer patients. We carried out an in-depth analysis by combining multiplex stable isotope-resolved metabolomics with reversed phase protein array to map the dynamic changes of the IM metabolic network and key protein regulators in four human donors' Mϕs in response to differential polarization and M1 repolarizer ß-glucan (whole glucan particles [WGPs]). These responses were compared with those of WGP-treated ex vivo organotypic tissue cultures (OTCs) of human non-small cell lung cancer. We found consistently enhanced tryptophan catabolism with blocked NAD+ and UTP synthesis in M1-type Mϕs (M1-Mϕs), which was associated with immune activation evidenced by increased release of IL-1ß/CXCL10/IFN-γ/TNF-α and reduced phagocytosis. In M2a-Mϕs, WGP treatment of M2a-Mϕs robustly increased glucose utilization via the glycolysis/oxidative branch of the pentose phosphate pathway while enhancing UDP-N-acetyl-glucosamine turnover and glutamine-fueled gluconeogenesis, which was accompanied by the release of proinflammatory IL-1ß/TNF-α to above M1-Mϕ's levels, anti-inflammatory IL-10 to above M2a-Mϕ's levels, and attenuated phagocytosis. These IM metabolic responses could underlie the opposing effects of WGP, i.e., reverting M2- to M1-type immune functions but also boosting anti-inflammation. Variable reprogrammed Krebs cycle and glutamine-fueled synthesis of UTP in WGP-treated OTCs of human non-small cell lung cancer were observed, reflecting variable M1 repolarization of tumor-associated Mϕs. This was supported by correlation with IL-1ß/TNF-α release and compromised tumor status, making patient-derived OTCs unique models for studying variable immunotherapeutic efficacy in cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , beta-Glucanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Glucosamina/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Interleucina-10 , Neoplasias Pulmonares/metabolismo , Macrófagos , NAD/metabolismo , Fagocitosis , Triptófano/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Uridina Difosfato/metabolismo , Uridina Trifosfato/metabolismo , beta-Glucanos/metabolismo
11.
Anal Chem ; 94(36): 12286-12291, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36040304

RESUMEN

Biologically important 2-hydroxy carboxylates such as lactate, malate, and 2-hydroxyglutarate exist in two enantiomeric forms that cannot be distinguished under achiral conditions. The D and L (or R, S) enantiomers have different biological origins and functions, and therefore, there is a need for a simple method for resolving, identifying, and quantifying these enantiomers. We have adapted and improved a chiral derivatization technique for nuclear magnetic resonance (NMR), which needs no chromatography for enantiomer resolution, with greater than 90% overall recovery. This method was developed for 2-hydroxyglutarate (2HG) to produce diastereomers resolvable by column chromatography. We have applied the method to lactate, malate, and 2HG. The limit of quantification was determined to be about 1 nmol for 2HG with coefficients of variation of less than 5%. We also demonstrated the method on an extract of a renal carcinoma bearing an isocitrate dehydrogenase-2 (IDH2) variant that produces copious quantities of 2HG and showed that it is the D enantiomer that was exclusively produced. We also demonstrated in the same experiment that the lactate produced in the same sample was the L enantiomer.


Asunto(s)
Neoplasias Renales , Malatos , Humanos , Hidroxiácidos , Isocitrato Deshidrogenasa , Lactatos , Espectroscopía de Resonancia Magnética
12.
Metabolites ; 12(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36005633

RESUMEN

Glycogen is a readily deployed intracellular energy storage macromolecule composed of branched chains of glucose anchored to the protein glycogenin. Although glycogen primarily occurs in the liver and muscle, it is found in most tissues, and its metabolism has been shown to be important in cancers and immune cells. Robust analysis of glycogen turnover requires stable isotope tracing plus a reliable means of quantifying total and labeled glycogen derived from precursors such as 13C6-glucose. Current methods for analyzing glycogen are time- and sample-consuming, at best semi-quantitative, and unable to measure stable isotope enrichment. Here we describe a microscale method for quantifying both intact and acid-hydrolyzed glycogen by ultra-high-resolution Fourier transform mass spectrometric (UHR-FTMS) and/or NMR analysis in stable isotope resolved metabolomics (SIRM) studies. Polar metabolites, including intact glycogen and their 13C positional isotopomer distributions, are first measured in crude biological extracts by high resolution NMR, followed by rapid and efficient acid hydrolysis to glucose under N2 in a focused beam microwave reactor, with subsequent analysis by UHR-FTMS and/or NMR. We optimized the microwave digestion time, temperature, and oxygen purging in terms of recovery versus degradation and found 10 min at 110−115 °C to give >90% recovery. The method was applied to track the fate of 13C6-glucose in primary human lung BEAS-2B cells, human macrophages, murine liver and patient-derived tumor xenograft (PDTX) in vivo, and the fate of 2H7-glucose in ex vivo lung organotypic tissue cultures of a lung cancer patient. We measured the incorporation of 13C6-glucose into glycogen and its metabolic intermediates, UDP-Glucose and glucose-1-phosphate, to demonstrate the utility of the method in tracing glycogen turnover in cells and tissues. The method offers a quantitative, sensitive, and convenient means to analyze glycogen turnover in mg amounts of complex biological materials.

13.
Sci Immunol ; 7(70): eabm8161, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35486677

RESUMEN

Effective T cell-mediated immune responses require the proper allocation of metabolic resources to sustain growth, proliferation, and cytokine production. Epigenetic control of the genome also governs T cell transcriptome and T cell lineage commitment and maintenance. Cellular metabolic programs interact with epigenetic regulation by providing substrates for covalent modifications of chromatin. By using complementary genetic, epigenetic, and metabolic approaches, we revealed that tricarboxylic acid (TCA) cycle flux fueled biosynthetic processes while controlling the ratio of succinate/α-ketoglutarate (α-KG) to modulate the activities of dioxygenases that are critical for driving T cell inflammation. In contrast to cancer cells, where succinate dehydrogenase (SDH)/complex II inactivation drives cell transformation and growth, SDH/complex II deficiency in T cells caused proliferation and survival defects when the TCA cycle was truncated, blocking carbon flux to support nucleoside biosynthesis. Replenishing the intracellular nucleoside pool partially relieved the dependence of T cells on SDH/complex II for proliferation and survival. SDH deficiency induced a proinflammatory gene signature in T cells and promoted T helper 1 and T helper 17 lineage differentiation. An increasing succinate/α-KG ratio in SDH-deficient T cells promoted inflammation by changing the pattern of the transcriptional and chromatin accessibility signatures and consequentially increasing the expression of the transcription factor, PR domain zinc finger protein 1. Collectively, our studies revealed a role of SDH/complex II in allocating carbon resources for anabolic processes and epigenetic regulation in T cell proliferation and inflammation.


Asunto(s)
Epigénesis Genética , Succinato Deshidrogenasa , Proliferación Celular , Cromatina , Complejo II de Transporte de Electrones/deficiencia , Humanos , Inflamación/genética , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacología , Errores Innatos del Metabolismo , Enfermedades Mitocondriales , Nucleósidos , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Succinatos
14.
Front Oncol ; 12: 1094210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713582

RESUMEN

TP53 is the most commonly mutated gene in cancer, and gain-of-function mutations have wide-ranging effects. Efforts to reactivate wild-type p53 function and inhibit mutant functions have been complicated by the variety of TP53 mutations. Identified from a screen, the NSC59984 compound has been shown to restore activity to mutant p53 in colorectal cancer cells. Here, we investigated its effects on esophageal adenocarcinoma cells with specific p53 hot-spot mutations. NSC59984 treatment of cells reactivated p53 transcriptional regulation, inducing mitochondrial intrinsic apoptosis. Analysis of its effects on cellular metabolism demonstrated increased utilization of the pentose phosphate pathway and inhibition of glycolysis at the fructose-1,6-bisphosphate to fructose 6-phosphate junction. Furthermore, treatment of cells with NSC59984 increased reactive oxygen species production and decreased glutathione levels; these effects were enhanced by the addition of buthionine sulfoximine and inhibited by N-acetyl cysteine. We found that the effects of NSC59984 were substantially greater in cells harboring the p53 R248W mutation. Overall, these findings demonstrate p53-dependent effects of NSC59984 on cellular metabolism, with increased activity in cells harboring the p53 R248W mutation. This research highlights the importance of defining the mutational status of a particular cancer to create a patient-centric strategy for the treatment of p53-driven cancers.

15.
Elife ; 102021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34709178

RESUMEN

Cellular metabolism has key roles in T cells differentiation and function. CD4+ T helper-1 (Th1), Th2, and Th17 subsets are highly glycolytic while regulatory T cells (Tregs) use glucose during expansion but rely on fatty acid oxidation for function. Upon uptake, glucose can enter pentose phosphate pathway (PPP) or be used in glycolysis. Here, we showed that blocking 6-phosphogluconate dehydrogenase (6PGD) in the oxidative PPP resulted in substantial reduction of Tregs suppressive function and shifts toward Th1, Th2, and Th17 phenotypes which led to the development of fetal inflammatory disorder in mice model. These in turn improved anti-tumor responses and worsened the outcomes of colitis model. Metabolically, 6PGD blocked Tregs showed improved glycolysis and enhanced non-oxidative PPP to support nucleotide biosynthesis. These results uncover critical role of 6PGD in modulating Tregs plasticity and function, which qualifies it as a novel metabolic checkpoint for immunotherapy applications.


Asunto(s)
Vía de Pentosa Fosfato , Fosfogluconato Deshidrogenasa/genética , Linfocitos T Reguladores/fisiología , Animales , Ratones , Fosfogluconato Deshidrogenasa/metabolismo
16.
Elife ; 102021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34406120

RESUMEN

Although Pembrolizumab-based immunotherapy has significantly improved lung cancer patient survival, many patients show variable efficacy and resistance development. A better understanding of the drug's action is needed to improve patient outcomes. Functional heterogeneity of the tumor microenvironment (TME) is crucial to modulating drug resistance; understanding of individual patients' TME that impacts drug response is hampered by lack of appropriate models. Lung organotypic tissue slice cultures (OTC) with patients' native TME procured from primary and brain-metastasized (BM) non-small cell lung cancer (NSCLC) patients were treated with Pembrolizumab and/or beta-glucan (WGP, an innate immune activator). Metabolic tracing with 13C6-Glc/13C5,15N2-Gln, multiplex immunofluorescence, and digital spatial profiling (DSP) were employed to interrogate metabolic and functional responses to Pembrolizumab and/or WGP. Primary and BM PD-1+ lung cancer OTC responded to Pembrolizumab and Pembrolizumab + WGP treatments, respectively. Pembrolizumab activated innate immune metabolism and functions in primary OTC, which were accompanied by tissue damage. DSP analysis indicated an overall decrease in immunosuppressive macrophages and T cells but revealed microheterogeneity in immune responses and tissue damage. Two TMEs with altered cancer cell properties showed resistance. Pembrolizumab or WGP alone had negligible effects on BM-lung cancer OTC but Pembrolizumab + WGP blocked central metabolism with increased pro-inflammatory effector release and tissue damage. In-depth metabolic analysis and multiplex TME imaging of lung cancer OTC demonstrated overall innate immune activation by Pembrolizumab but heterogeneous responses in the native TME of a patient with primary NSCLC. Metabolic and functional analysis also revealed synergistic action of Pembrolizumab and WGP in OTC of metastatic NSCLC.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunidad Innata , Neoplasias Pulmonares/inmunología , Linfocitos T CD8-positivos/inmunología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Inmunoterapia/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Macrófagos/inmunología , Metástasis de la Neoplasia , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral
17.
Metabolites ; 11(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805301

RESUMEN

Lipids comprise diverse classes of compounds that are important for the structure and properties of membranes, as high-energy fuel sources and as signaling molecules. Therefore, the turnover rates of these varied classes of lipids are fundamental to cellular function. However, their enormous chemical diversity and dynamic range in cells makes detailed analysis very complex. Furthermore, although stable isotope tracers enable the determination of synthesis and degradation of complex lipids, the numbers of distinguishable molecules increase enormously, which exacerbates the problem. Although LC-MS-MS (Liquid Chromatography-Tandem Mass Spectrometry) is the standard for lipidomics, NMR can add value in global lipid analysis and isotopomer distributions of intact lipids. Here, we describe new developments in NMR analysis for assessing global lipid content and isotopic enrichment of mixtures of complex lipids for two cell lines (PC3 and UMUC3) using both 13C6 glucose and 13C5 glutamine tracers.

18.
Anal Chem ; 93(17): 6629-6637, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33880916

RESUMEN

A substantial fraction of common metabolites contains carboxyl functional groups. Their 13C isotopomer analysis by nuclear magnetic resonance (NMR) is hampered by the low sensitivity of the 13C nucleus, the slow longitudinal relaxation for the lack of an attached proton, and the relatively low chemical shift dispersion of carboxylates. Chemoselective (CS) derivatization is a means of tagging compounds in a complex mixture via a specific functional group. 15N1-cholamine has been shown to be a useful CS agent for carboxylates, producing a peptide bond that can be detected via 15N-attached H with high sensitivity in heteronuclear single quantum coherence experiments. Here, we report an improved method of derivatization and show how 13C-enrichment at the carboxylate and/or the adjacent carbon can be determined via one- and two-bond coupling of the carbons adjacent to the cholamine 15N atom in the derivatives. We have applied this method for the determination of 13C isotopomer distribution in the extracts of A549 cell culture and liver tissue from a patient-derived xenograft mouse.


Asunto(s)
Ácidos Carboxílicos , Compuestos de Trimetilamonio , Animales , Carbono , Espectroscopía de Resonancia Magnética , Ratones
19.
Cell Rep ; 34(10): 108831, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691103

RESUMEN

Although T cell expansion depends on glycolysis, T effector cell differentiation requires signaling via the production of reactive oxygen species (ROS). Because the pentose phosphate pathway (PPP) regulates ROS by generating nicotinamide adenine dinucleotide phosphate (NADPH), we examined how PPP blockade affects T cell differentiation and function. Here, we show that genetic ablation or pharmacologic inhibition of the PPP enzyme 6-phosphogluconate dehydrogenase (6PGD) in the oxidative PPP results in the generation of superior CD8+ T effector cells. These cells have gene signatures and immunogenic markers of effector phenotype and show potent anti-tumor functions both in vitro and in vivo. In these cells, metabolic reprogramming occurs along with increased mitochondrial ROS and activated antioxidation machinery to balance ROS production against oxidative damage. Our findings reveal a role of 6PGD as a checkpoint for T cell effector differentiation/survival and evidence for 6PGD as an attractive metabolic target to improve tumor immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Fosfogluconato Deshidrogenasa/metabolismo , 6-Aminonicotinamida/química , 6-Aminonicotinamida/farmacología , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Granzimas/genética , Granzimas/metabolismo , Humanos , Inmunoterapia , Listeria monocytogenes/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Vía de Pentosa Fosfato/efectos de los fármacos , Vía de Pentosa Fosfato/fisiología , Fosfogluconato Deshidrogenasa/antagonistas & inhibidores , Fosfogluconato Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Trasplante Heterólogo
20.
Anal Chem ; 93(5): 2749-2757, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33482055

RESUMEN

The metabolome comprises a complex network of interconnecting enzyme-catalyzed reactions that involve transfers of numerous molecular subunits. Thus, the reconstruction of metabolic networks requires metabolite substructures to be tracked. Subunit tracking can be achieved by tracing stable isotopes through metabolic transformations using NMR and ultrahigh -resolution (UHR)-mass spectrometry (MS). UHR-MS1 readily resolves and counts isotopic labels in metabolites but requires tandem MS to help identify isotopic enrichment in substructures. However, it is challenging to perform chromatography-based UHR-MS1 with its long acquisition time, while acquiring MS2 data on many coeluting labeled isotopologues for each metabolite. We have developed an ion chromatography (IC)-UHR-MS1/data-independent(DI)-HR-MS2 method to trace the fate of 13C atoms from [13C6]-glucose ([13C6]-Glc) in 3D A549 spheroids in response to anticancer selenite and simultaneously 13C/15N atoms from [13C5,15N2]-glutamine ([13C5,15N2]-Gln) in 2D BEAS-2B cells in response to arsenite transformation. This method retains the complete isotopologue distributions of metabolites via UHR-MS1 while simultaneously acquiring substructure label information via DI-MS2. These details in metabolite labeling patterns greatly facilitate rigorous reconstruction of multiple, intersecting metabolic pathways of central metabolism, which are illustrated here for the purine/pyrimidine nucleotide biosynthesis. The pathways reconstructed based on subunit-level isotopologue analysis further reveal specific enzyme-catalyzed reactions that are impacted by selenite or arsenite treatments.


Asunto(s)
Redes y Vías Metabólicas , Metabolómica , Isótopos de Carbono , Marcaje Isotópico , Isótopos de Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA