RESUMEN
To reduce pollution caused by traditional plastic packaging and preparation of silver nanoparticles (AgNPs), this work aims to develop biological macromolecular packaging films with green synthesized AgNPs. In this study, a novel P. cocos polysaccharide (PCP) with a unique monosaccharide composition was extracted from Poria cocos (Schw.) Wolf. Then, this polysaccharide containing 24.68 % rhamnose was used as a stabilizer for the green synthesis of PCP-AgNPs for the first time. PCP-AgNPs exhibited excellent antibacterial activity against P. aeruginosa, E. coli, and S. aureus, with the highest antibacterial activity against E. coli (inhibition zone diameter = 11.14 ± 0.79 mm). Subsequently, PCP-AgNPs/chitosan (CS) film was successfully prepared by incorporating PCP-AgNPs into the CS film solution. Several experiments demonstrated that the addition of this nanomaterial promoted the formation of noncovalent interactions between CS and PCP-AgNPs, resulting in a more regular and denser film. Compared to the CS film and control group, the PCP-AgNPs/CS film significantly maintained the quality indexes of strawberries. Therefore, this composite film successfully extended the shelf life of strawberries. Regarding safety, these packaging films were not cytotoxic toward RAW264.7 cells. In conclusion, the environmentally friendly PCP-AgNPs/CS film has the potential to replace some traditional food packaging materials.
Asunto(s)
Antibacterianos , Embalaje de Alimentos , Tecnología Química Verde , Nanopartículas del Metal , Polisacáridos , Plata , Nanopartículas del Metal/química , Plata/química , Embalaje de Alimentos/métodos , Polisacáridos/química , Polisacáridos/farmacología , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Animales , Células RAW 264.7 , Wolfiporia/química , Pruebas de Sensibilidad Microbiana , Escherichia coli/efectos de los fármacosRESUMEN
As primary coffee by-products, Arabica coffee husks are largely discarded during coffee-drying, posing a serious environmental threat. However, coffee husks could be used as potential material for extracting pectin polysaccharides, with high bioactivities and excellent processing properties. Thus, the present study aimed to extract the pectin polysaccharide from Arabica coffee husk(s) (CHP). The CHP yield was calculated after vacuum freeze-drying, and its average molecular weight (Mw) was detected by gel permeation chromatography (GPC). The structural characteristics of CHP were determined by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM). Additionally, the rheological and antioxidant properties of CHP and the inhibition capacities of advanced glycation end products (AGEs) with different concentrations were evaluated. The interaction mechanisms between galacturonic acid (GalA) and the AGE receptor were analyzed using molecular docking. The results demonstrated that the CHP yield was 19.13 ± 0.85%, and its Mw was 1.04 × 106 Da. The results of the structural characteristics results revealed that CHP was an amorphous and low-methoxyl pectic polysaccharide linked with an α-(1â6) glycosidic bond, and mainly composed of rhamnose (Rha, 2.55%), galacturonic acid (GalA, 45.01%), ß-N-acetyl glucosamine (GlcNAc, 5.17%), glucose (Glc, 32.29%), galactose (Gal, 6.80%), xylose (Xyl, 0.76%), and arabinose (Ara, 7.42%). The surface microstructure of CHP was rough with cracks, and its aqueous belonged to non-Newtonian fluid with a higher elastic modulus (G'). Furthermore, the results of the antioxidant properties indicated that CHP possessed vigorous antioxidant activities in a dose manner, and the inhibition capacities of AGEs reached their highest of 66.0 ± 0.35% at 1.5 mg/mL of CHP. The molecular docking prediction demonstrated that GalA had a good affinity toward AGE receptors by -6.20 kcal/mol of binding energy. Overall, the study results provide a theoretical basis for broadening the application of CHP in the food industry.
RESUMEN
Mode selection is crucial to achieving stable single-mode lasing in microlasers. Here, we demonstrate experimentally a dual-port square microresonator for single-mode lasing with a side-mode-suppression ratio (SMSR) exceeding 40â dB. By connecting waveguides at two opposite vertices, the quality factor for the antisymmetric mode (ASM) is much higher than that of the symmetric mode (SM), enabling single-mode lasing. Furthermore, far-field interference patterns similar to Young's two-slit interference are observed. This microlaser is capable of providing two optical sources simultaneously for optical signal processing in high-density integrated photonic circuits.
RESUMEN
This study evaluated the anti-inflammatory effect of epicatechin (EC) on acute lung injury (ALI) induced by lipopolysaccharide (LPS) of tracheal installation in BALB/c mice. It was observed that EC could alleviate not only the histopathological changes but also decrease the wet/dry weight (W/D) ratio of lung tissues. It also suppressed the release of IL-1ß, IL-6, and TNF-α in serum, bronchoalveolar lavage fluid (BALF), and lung tissues, respectively. A quantitative realtime PCR-based study further indicated that EC also inhibited the levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA in lung tissues. In addition, the Western blot report suggested that EC was closely involved in the inhibition of phosphorylation of ERK, JNK, p38, p65, and IκB in mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) signaling pathway. These results provide an experimental and theoretical basis for treating pulmonary inflammation by EC.