Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 14(1): 5579, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696824

RESUMEN

Immunological memory is critical for immune protection, particularly at epithelial sites, which are under constant risk of pathogen invasions. To counter invading pathogens, CD8+ memory T cells develop at the location of infection: tissue-resident memory T cells (TRM). CD8+ T-cell responses are associated with type-1 infections and type-1 regulatory T cells (TREG) are important for CD8+ T-cell development, however, if CD8+ TRM cells develop under other infection types and require immune type-specific TREG cells is unknown. We used three distinct lung infection models, to show that type-2 helminth infection does not establish CD8+ TRM cells. Intracellular (type-1) and extracellular (type-3) infections do and rely on the recruitment of response type-matching TREG population contributing transforming growth factor-ß. Nevertheless, type-1 TREG cells remain the most important population for TRM cell development. Once established, TRM cells maintain their immune type profile. These results may have implications in the development of vaccines inducing CD8+ TRM cells.


Asunto(s)
Células T de Memoria , Linfocitos T Reguladores , Linfocitos T CD4-Positivos , Diferenciación Celular , Linfocitos T CD8-positivos
2.
Proc Natl Acad Sci U S A ; 119(34): e2202144119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969785

RESUMEN

The metabolic capacity of many cells is tightly regulated and can adapt to changes in metabolic resources according to environmental changes. Tissue-resident memory (TRM) CD8+ T cells are one of the most abundant T cell populations and offer rapid protection against invading pathogens, especially at the epithelia. TRM cells metabolically adapt to their tissue niche, such as the intestinal epithelial barrier. In the small intestine, the types of TRM cells are intraepithelial lymphocytes (IELs), which contain high levels of cytotoxic molecules and express activation markers, suggesting a heightened state of activation. We hypothesize that the tissue environment may determine IEL activity. We show that IEL activation, in line with its semiactive status, is metabolically faster than circulating CD8+ T cells. IEL glycolysis and oxidative phosphorylation (OXPHOS) are interdependently regulated and are dependent on rapid access to metabolites from the environment. IELs are restrained by local availability of metabolites, but, especially, glucose levels determine their activity. Importantly, this enables functional control of intestinal TRM cells by metabolic means within the fragile environment of the intestinal epithelial barrier.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos Intraepiteliales , Células T de Memoria , Linfocitos T CD8-positivos/citología , Mucosa Intestinal/citología , Intestinos/citología , Linfocitos Intraepiteliales/citología , Activación de Linfocitos , Células T de Memoria/citología , Fosforilación Oxidativa
3.
Cell Mol Life Sci ; 79(5): 265, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484438

RESUMEN

Alcoholic pancreatitis and hepatitis are frequent, potentially lethal diseases with limited treatment options. Our previous study reported that the expression of CFTR Cl- channel is impaired by ethanol in pancreatic ductal cells leading to more severe alcohol-induced pancreatitis. In addition to determining epithelial ion secretion, CFTR has multiple interactions with other proteins, which may influence intracellular Ca2+ signaling. Thus, we aimed to investigate the impact of ethanol-mediated CFTR damage on intracellular Ca2+ homeostasis in pancreatic ductal epithelial cells and cholangiocytes. Human and mouse pancreas and liver samples and organoids were used to study ion secretion, intracellular signaling, protein expression and interaction. The effect of PMCA4 inhibition was analyzed in a mouse model of alcohol-induced pancreatitis. The decreased CFTR expression impaired PMCA function and resulted in sustained intracellular Ca2+ elevation in ethanol-treated and mouse and human pancreatic organoids. Liver samples derived from alcoholic hepatitis patients and ethanol-treated mouse liver organoids showed decreased CFTR expression and function, and impaired PMCA4 activity. PMCA4 co-localizes and physically interacts with CFTR on the apical membrane of polarized epithelial cells, where CFTR-dependent calmodulin recruitment determines PMCA4 activity. The sustained intracellular Ca2+ elevation in the absence of CFTR inhibited mitochondrial function and was accompanied with increased apoptosis in pancreatic epithelial cells and PMCA4 inhibition increased the severity of alcohol-induced AP in mice. Our results suggest that improving Ca2+ extrusion in epithelial cells may be a potential novel therapeutic approach to protect the exocrine pancreatic function in alcoholic pancreatitis and prevent the development of cholestasis in alcoholic hepatitis.


Asunto(s)
Hepatitis Alcohólica , Hepatitis , Pancreatitis Alcohólica , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Etanol/toxicidad , Hepatitis/metabolismo , Hepatitis Alcohólica/genética , Hepatitis Alcohólica/metabolismo , Humanos , Ratones , Pancreatitis Alcohólica/metabolismo
4.
Eur J Immunol ; 52(1): 149-160, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34695227

RESUMEN

During the COVID-19 pandemic, Portugal has experienced three distinct SARS-CoV-2 infection waves. We previously documented the prevalence of SARS-CoV-2 immunity, measured by specific antibodies, in September 2020, 6 months after the initial moderate wave. Here, we show the seroprevalence changes 6 months later, up to the second week of March 2021, shortly following the third wave, which was one of the most severe in the world, and 2 months following the start of the vaccination campaign. A longitudinal epidemiological study was conducted, with a stratified quota sample of the Portuguese population. Serological testing was performed, including ELISA determination of antibody class and titers. The proportion of seropositives, which was 2.2% in September 2020, rose sharply to 17.3% (95% CI: 15.8-18.8%) in March 2021. Importantly, circulating IgG and IgA antibody levels were very stable 6 months after the initial determination and up to a year after initial infection, indicating long-lasting infection immunity against SARS-CoV-2. Moreover, vaccinated people had higher IgG levels from 3 weeks post-vaccination when compared with previously infected people at the same time post-infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19 , COVID-19 , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , COVID-19/epidemiología , COVID-19/inmunología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Portugal/epidemiología , Prevalencia , Factores de Tiempo
5.
J Physiol ; 598(6): 1253-1270, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31917868

RESUMEN

KEY POINTS: Acute biliary pancreatitis is a significant clinical challenge as currently no specific pharmaceutical treatment exists. Intracellular Ca2+ overload, increased reactive oxygen species (ROS) production, mitochondrial damage and intra-acinar digestive enzyme activation caused by bile acids are hallmarks of acute biliary pancreatitis. Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that has recently emerged as an important contributor to oxidative-stress-induced cellular Ca2+ overload across different diseases. We demonstrated that TRPM2 is expressed in the plasma membrane of mouse pancreatic acinar and ductal cells, which can be activated by increased oxidative stress induced by H2 O2 treatment and contributed to bile acid-induced extracellular Ca2+ influx in acinar cells, which promoted acinar cell necrosis in vitro and in vivo. These results suggest that the inhibition of TRPM2 may be a potential treatment option for biliary pancreatitis. ABSTRACT: Acute biliary pancreatitis poses a significant clinical challenge as currently no specific pharmaceutical treatment exists. Disturbed intracellular Ca2+ signalling caused by bile acids is a hallmark of the disease, which induces increased reactive oxygen species (ROS) production, mitochondrial damage, intra-acinar digestive enzyme activation and cell death. Because of this mechanism of action, prevention of toxic cellular Ca2+ overload is a promising therapeutic target. Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that has recently emerged as an important contributor to oxidative-stress-induced cellular Ca2+ overload across different diseases. However, the expression and possible functions of TRPM2 in the exocrine pancreas remain unknown. Here we found that TRPM2 is expressed in the plasma membrane of mouse pancreatic acinar and ductal cells, which can be activated by increased oxidative stress induced by H2 O2 treatment. TRPM2 activity was found to contribute to bile acid-induced extracellular Ca2+ influx in acinar cells, but did not have the same effect in ductal cells. The generation of intracellular ROS in response to bile acids was remarkably higher in pancreatic acinar cells compared to isolated ducts, which can explain the difference between acinar and ductal cells. This activity promoted acinar cell necrosis in vitro independently from mitochondrial damage or mitochondrial fragmentation. In addition, bile-acid-induced experimental pancreatitis was less severe in TRPM2 knockout mice, whereas the lack of TRPM2 had no protective effect in cerulein-induced acute pancreatitis. Our results suggest that the inhibition of TRPM2 may be a potential treatment option for biliary pancreatitis.


Asunto(s)
Células Acinares/patología , Calcio/metabolismo , Pancreatitis/patología , Canales Catiónicos TRPM/genética , Enfermedad Aguda , Animales , Ratones , Ratones Noqueados , Necrosis
6.
Lab Invest ; 100(1): 84-97, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31409889

RESUMEN

Pancreatic exocrine secretory processes are challenging to investigate on primary epithelial cells. Pancreatic organoid cultures may help to overcome shortcomings of the current models, however the ion secretory processes in pancreatic organoids-and therefore their physiological relevance or their utility in disease modeling-are not known. To answer these questions, we provide side-by-side comparison of gene expression, morphology, and function of epithelial cells in primary isolated pancreatic ducts and organoids. We used mouse pancreatic ductal fragments for experiments or were grown in Matrigel to obtain organoid cultures. Using PCR analysis we showed that gene expression of ion channels and transporters remarkably overlap in primary ductal cells and organoids. Morphological analysis with scanning electron microscopy revealed that pancreatic organoids form polarized monolayers with brush border on the apical membrane. Whereas the expression and localization of key proteins involved in ductal secretion (cystic fibrosis transmembrane conductance regulator, Na+/H+ exchanger 1 and electrogenic Na+/HCO3- cotransporter 1) are equivalent to the primary ductal fragments. Measurements of intracellular pH and Cl- levels revealed no significant difference in the activities of the apical Cl-/HCO3- exchange, or in the basolateral Na+ dependent HCO3- uptake. In summary we found that ion transport activities in the mouse pancreatic organoids are remarkably similar to those observed in freshly isolated primary ductal fragments. These results suggest that organoids can be suitable and robust model to study pancreatic ductal epithelial ion transport in health and diseases and facilitate drug development for secretory pancreatic disorders like cystic fibrosis, or chronic pancreatitis.


Asunto(s)
Iones/metabolismo , Organoides , Páncreas Exocrino/fisiología , Conductos Pancreáticos/fisiología , Animales , Señalización del Calcio , Técnicas de Cultivo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Ratones
7.
J Physiol ; 597(24): 5879-5898, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31631343

RESUMEN

KEY POINTS: •Bile acids, ethanol and fatty acids affect pancreatic ductal fluid and bicarbonate secretion via mitochondrial damage, ATP depletion and calcium overload. •Pancreatitis-inducing factors open the membrane transition pore (mPTP) channel via cyclophilin D activation in acinar cells, causing calcium overload and cell death; genetic or pharmacological inhibition of mPTP improves the outcome of acute pancreatitis in animal models. •Here we show that genetic and pharmacological inhibition of mPTP protects mitochondrial homeostasis and cell function evoked by pancreatitis-inducing factors in pancreatic ductal cells. •The results also show that the novel cyclosporin A derivative NIM811 protects mitochondrial function in acinar and ductal cells, and it preserves bicarbonate transport mechanisms in pancreatic ductal cells. •We found that NIM811 is highly effective in different experimental pancreatitis models and has no side-effects. NIM811 is a highly suitable compound to be tested in clinical trials. ABSTRACT: Mitochondrial dysfunction plays a crucial role in the development of acute pancreatitis (AP); however, no compound is currently available with clinically acceptable effectiveness and safety. In this study, we investigated the effects of a novel mitochondrial transition pore inhibitor, N-methyl-4-isoleucine cyclosporin (NIM811), in AP. Pancreatic ductal and acinar cells were isolated by enzymatic digestion from Bl/6 mice. In vitro measurements were performed by confocal microscopy and microfluorometry. Preventative effects of pharmacological [cylosporin A (2 µm), NIM811 (2 µm)] or genetic (Ppif-/- /Cyp D KO) inhibition of the mitochondrial transition pore (mPTP) during the administration of either bile acids (BA) or ethanol + fatty acids (EtOH+FA) were examined. Toxicity of mPTP inhibition was investigated by detecting apoptosis and necrosis. In vivo effects of the most promising compound, NIM811 (5 or 10 mg kg-1 per os), were checked in three different AP models induced by either caerulein (10 × 50 µg kg-1 ), EtOH+FA (1.75 g kg-1 ethanol and 750 mg kg-1 palmitic acid) or 4% taurocholic acid (2 ml kg-1 ). Both genetic and pharmacological inhibition of Cyp D significantly prevented the toxic effects of BA and EtOH+FA by restoring mitochondrial membrane potential (Δψ) and preventing the loss of mitochondrial mass. In vivo experiments revealed that per os administration of NIM811 has a protective effect in AP by reducing oedema, necrosis, leukocyte infiltration and serum amylase level in AP models. Administration of NIM811 had no toxic effects. The novel mitochondrial transition pore inhibitor NIM811 thus seems to be an exceptionally good candidate compound for clinical trials in AP.


Asunto(s)
Ciclosporina/uso terapéutico , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Pancreatitis/tratamiento farmacológico , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Animales , Apoptosis , Bicarbonatos/metabolismo , Células Cultivadas , Ciclosporina/efectos adversos , Ciclosporina/farmacología , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Conductos Pancreáticos/efectos de los fármacos , Conductos Pancreáticos/metabolismo
8.
PLoS One ; 11(10): e0165244, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27776171

RESUMEN

OBJECTIVE: Biomedical investment trends in 2015 show a huge decrease of investment in gastroenterology. Since academic research usually provides the basis for industrial research and development (R&D), our aim was to understand research trends in the field of gastroenterology over the last 50 years and identify the most endangered areas. METHODS: We searched for PubMed hits for gastrointestinal (GI) diseases for the 1965-2015 period. Overall, 1,554,325 articles were analyzed. Since pancreatology was identified as the most endangered field of research within gastroenterology, we carried out a detailed evaluation of research activity in pancreatology. RESULTS: In 1965, among the major benign GI disorders, 51.9% of the research was performed on hepatitis, 25.7% on pancreatitis, 21.7% on upper GI diseases and only 0.7% on the lower GI disorders. Half a century later, in 2015, research on hepatitis and upper GI diseases had not changed significantly; however, studies on pancreatitis had dropped to 10.7%, while work on the lower GI disorders had risen to 23.4%. With regard to the malignant disorders (including liver, gastric, colon, pancreatic and oesophageal cancer), no such large-scale changes were observed in the last 50 years. Detailed analyses revealed that besides the drop in research activity in pancreatitis, there are serious problems with the quality of the studies as well. Only 6.8% of clinical trials on pancreatitis were registered and only 5.5% of these registered trials were multicentre and multinational (more than five centres and nations), i.e., the kind that provides the highest level of impact and evidence level. CONCLUSIONS: There has been a clear drop in research activity in pancreatitis. New international networks and far more academic R&D activities should be established in order to find the first therapy specifically for acute pancreatitis.


Asunto(s)
Investigación Biomédica , Pancreatitis/terapia , Enfermedad Aguda , Ensayos Clínicos como Asunto , Enfermedades Gastrointestinales , Humanos , Internacionalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA