RESUMEN
The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell-teratocytes-that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.
Asunto(s)
Adaptación Fisiológica , Drosophila , Interacciones Huésped-Parásitos , Avispas , Animales , Avispas/fisiología , Drosophila/parasitología , Pupa/parasitología , Larva/parasitología , Larva/metabolismoRESUMEN
Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.
Asunto(s)
Migración Animal , Genómica , Viento , Animales , Genómica/métodos , Hemípteros/genética , Genoma de los Insectos , Genética de PoblaciónRESUMEN
IMPORTANCE: Black solider fly larvae and the gut microbiota can recycle nutrients from various organic wastes into valuable insect biomass. We found that Citrobacter amalonaticus, a gut commensal bacterium of the insect, exerts beneficial effects on larval growth and development and that the expression of many metabolic larval genes was significantly impacted by the symbiont. To identify the larval genes involved in the host-symbiont interaction, we engineered the symbiont to produce double-strand RNA and enabled the strain to silence host genes in the larval gut environment where the interaction takes place. With this approach, we confirmed that two intestinal protease families are involved in the interaction and provided further evidence that intestinal protein metabolism plays a role in the interaction. This work expands the genetic toolkits available to study the insect functional genomics and host-symbiont interaction and provide the prospective for the future application of gut microbiota on the large-scale bioconversion.
Asunto(s)
Dípteros , Humanos , Animales , Larva/microbiología , Estudios Prospectivos , Bacterias , SimbiosisRESUMEN
The oriental armyworm, Mythimna separata, is known for its long-distance seasonal migration and environment-dependent phase polymorphisms. Here, we present a chromosome-level genome reference and integrate multi-omics, functional genetics, and behavioral assays to explore the genetic bases of the hallmark traits of M. separata migration. Gene family comparisons show expansion of gustatory receptor genes in this cereal crop pest. Functional investigation of magnetoreception-related genes and associated flight behaviors suggest that M. separata may use the geomagnetic field to guide orientation in its nocturnal flight. Comparative transcriptome characterizes a suite of genes that may confer the observed plasticity between phases, including genes involved in protein processing, hormone regulation, and dopamine metabolism. We further report molecular signatures that underlie the dynamic regulation of a migratory syndrome coordinating reproduction and flight. Our study yields insights into environment-dependent developmental plasticity in moths and advances our understanding of long-distance migration in nocturnal insect pests.
Asunto(s)
Mariposas Nocturnas , Animales , Spodoptera/genética , Mariposas Nocturnas/genética , Transcriptoma , Receptores de Superficie Celular/genéticaRESUMEN
The evolution of feeding habits leads to speciation in insects. Bactrocera true fruit flies display diverse feeding habits across species. We combine behavioral and functional genomic studies to probe the divergence between the specialist B. minax and the generalist B. dorsalis. We find that both vision and olfaction contribute to their respective host preferences, with a dominant effect of vision over the olfaction in short range. Correspondingly, host location-related genes are significantly enriched in the phototransduction pathway, of which the long-wavelength rhodopsin confers the color preference in both species and has been subject to selection in the specialist. We also find a massive expansion of olfactory receptors in the generalist, along with signatures of conditional expression and positive selection. The phylogenetic context suggests an ancestrally important role of vision in the host location of Bactrocera, as well as the increased performance and plasticity of olfaction alongside the arising of generalism.
Asunto(s)
Receptores Odorantes , Tephritidae , Animales , Filogenia , Genómica , Tephritidae/genética , Receptores Odorantes/genética , Olfato/genéticaRESUMEN
The growth and development of metabolous insects are mainly regulated by ecdysone and juvenile hormone. As a member of the low-density lipoprotein receptor (LDLR) family, megalin (mgl) is involved in the lipoprotein transport of cholesterol which is an essential precursor for the synthesis of ecdysone. Despite extensive studies in mammals, the function of mgl is still largely unknown in insects. In this study, we characterize the function of mgl in the silkworm Bombyx mori, the model species of Lepidoptera. We find that mgl is broadly present in the genomes of lepidopteran species and evolved with divergence between lepidopterans and Drosophila. The expression pattern suggests a ubiquitous role of mgl in the growth and development in the silkworm. We further perform clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-based mutagenesis of Bmmgl and find that both the development and the silk production of the silkworm are seriously affected by the disruption of Bmmgl. Our results not only explore the function of mgl in Lepidoptera but also add to our understanding of how cholesterol metabolism is involved in the development of insects.
Asunto(s)
Bombyx , Animales , Proteína 9 Asociada a CRISPR , Ecdisona , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Hormonas Juveniles , Lipoproteínas , Lipoproteínas LDL , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Mamíferos/metabolismo , SedaRESUMEN
The black cutworm (BCW), Agrotis ipsilon, is a worldwide polyphagous and underground pest that causes a high level of economic loss to a wide range of crops through the damage of roots. This species performs non-directed migration throughout East and Southeast Asia seasonally. Lack of a genome information has limited further studies on its unique biology and the development of novel management approaches. In this study, we present a 476 Mb de novo assembly of BCW, along with a consensus gene set of 14,801 protein-coding gene models. Quality controls show that both genome assembly and annotations are high-quality and mostly complete. We focus manual annotation and comparative genomics on gene families that related to the unique attributes of this species, such as nocturnality, long-distance migration, and host adaptation. We find that the BCW genome encodes a similar gene repertoire in various migration-related gene families to the diural migratory butterfly Danaus plexiipus, with additional copies of long wavelength opsin and two eye development-related genes. On the other hand, we find that the genomes of BCW and many other polyphagous lepidopterans encode many more gustatory receptor genes, particularly the lineage-specific expanded bitter receptor genes, than the mono- or oligo-phagous species, suggesting a common role of gustatory receptors (GRs) expansion in host range expansion. The availability of a BCW genome provides valuable resources to study the molecular mechanisms of non-directed migration in lepidopteran pests and to develop novel strategies to control migratory nocturnal pests.
Asunto(s)
Genoma , Mariposas Nocturnas/genética , Animales , Masculino , FilogeniaRESUMEN
Intraspecific competition is a major force in mediating population dynamics, fuelling adaptation, and potentially leading to evolutionary diversification. Among the evolutionary arms races between parasites, one of the most fundamental and intriguing behavioural adaptations and counter-adaptations are superparasitism and superparasitism avoidance. However, the underlying mechanisms and ecological contexts of these phenomena remain underexplored. Here, we apply the Drosophila parasite Leptopilina boulardi as a study system and find that this solitary endoparasitic wasp provokes a host escape response for superparasitism avoidance. We combine multi-omics and in vivo functional studies to characterize a small set of RhoGAP domain-containing genes that mediate the parasite's manipulation of host escape behaviour by inducing reactive oxygen species in the host central nervous system. We further uncover an evolutionary scenario in which neofunctionalization and specialization gave rise to the novel role of RhoGAP domain in avoiding superparasitism, with an ancestral origin prior to the divergence between Leptopilina specialist and generalist species. Our study suggests that superparasitism avoidance is adaptive for a parasite and adds to our understanding of how the molecular manipulation of host behaviour has evolved in this system.
Asunto(s)
Drosophila melanogaster/parasitología , Proteínas Activadoras de GTPasa/genética , Interacciones Huésped-Parásitos/genética , Proteínas de Insectos/genética , Avispas/genética , Avispas/patogenicidad , Animales , Reacción de Prevención , Conducta Animal , Coevolución Biológica , Sistema Nervioso Central/parasitología , Ingestión de Alimentos , Femenino , Proteínas Activadoras de GTPasa/clasificación , Proteínas Activadoras de GTPasa/metabolismo , Expresión Génica , Proteínas de Insectos/clasificación , Proteínas de Insectos/metabolismo , Larva/parasitología , Masculino , Familia de Multigenes , Especies Reactivas de Oxígeno/metabolismo , Avispas/metabolismoRESUMEN
The Asian corn borer (ACB) is the most devastating pest on maize in the western Pacific region of Asia. Despite broad interests in insecticide resistance, seasonal adaptation, and larval color mimicry regarding the ACB system, lacking of reference genomic information and a powerful gene editing approach have hindered the in-depth studies of these aspects. Here we present a 455.7 Mb draft genome of ACB with 98.4% completeness. Comparative genomics analysis showed an evident expansion in gene families of gustatory receptors (105), which is related to polyphagous characteristics. Based on the comparative transcriptome analysis of resistant and susceptible ACB against Bt Cry1Ab toxin, we identified 26 genes related to Cry1Ab resistance. Additionally, transcriptomics of insects exposed to conditions of low temperature and diapause (LT) vs. room temperature and diapause (RT) provided insights into the genetic mechanisms of cold adaptation. We also successfully developed an efficient CRISPR/Cas9-based genome editing system and applied it to explore the role of color pattern genes in the ecological adaptation of ACB. Taken together, our study provides a fully annotated high-quality reference genome and efficient gene editing system to realize the potential of ACB as a study system to address important biological questions such as insecticide resistance, seasonal adaptation, and coloration. These valuable genomic resources will also benefit the development of novel strategies for maize pest management.
Asunto(s)
Adaptación Biológica , Genoma de los Insectos , Herbivoria/genética , Mariposas Nocturnas/genética , Animales , Zea maysRESUMEN
The tea geometrid is a destructive insect pest on tea plants, which seriously affects tea production in terms of both yield and quality and causes severe economic losses. The tea geometrid also provides an important study system to address the ecological adaptive mechanisms underlying its unique host plant adaptation and protective resemblance. In this study, we fully sequenced and de novo assembled the reference genome of the tea geometrid, Ectropis grisescens, using long sequencing reads. We presented a highly continuous, near-complete genome reference (787.4 Mb; scaffold N50: 26.9 Mb), along with the annotation of 18,746 protein-coding genes and 53.3% repeat contents. Importantly, we successfully placed 97.8% of the assembly in 31 chromosomes based on Hi-C interactions and characterized the sex chromosome based on sex-biased sequencing coverage. Multiple quality-control assays and chromosome-scale synteny with the model species all supported the high quality of the presented genome reference. We focused biological annotations on gene families related to the host plant adaptation and camouflage in the tea geometrid and performed comparisons with other representative lepidopteran species. Important findings include the E. grisescens-specific expansion of CYP6 P450 genes that might be involved in metabolism of tea defensive chemicals and unexpected massive expansion of gustatory receptor gene families that suggests potential polyphagy for this tea pest. Furthermore, we developed an efficient genome editing system based on CRISPR/Cas9 technology and successfully implement mutagenesis of a Hox gene in the tea geometrid. Our study provides key genomic resources both for exploring unique mechanisms underlying the ecological adaptation of tea geometrids and for developing environment-friendly strategies for tea pest management.
Asunto(s)
Edición Génica , Genoma de los Insectos , Insectos/genética , Adaptación Fisiológica , Animales , Sistemas CRISPR-Cas , Cromosomas de InsectosRESUMEN
Parasitoids are ubiquitous in natural ecosystems. Parasitic strategies are highly diverse among parasitoid species, yet their underlying genetic bases are poorly understood. Here, we focus on the divergent adaptation of a specialist and a generalist drosophilid parasitoids. We find that a novel protein (Lar) enables active immune suppression by lysing the host lymph glands, eventually leading to successful parasitism by the generalist. Meanwhile, another novel protein (Warm) contributes to a passive strategy by attaching the laid eggs to the gut and other organs of the host, leading to incomplete encapsulation and helping the specialist escape the host immune response. We find that these diverse parasitic strategies both originated from lateral gene transfer, followed with duplication and specialization, and that they might contribute to the shift in host ranges between parasitoids. Our results increase our understanding of how novel gene functions originate and how they contribute to host adaptation.
Asunto(s)
Proteínas de Insectos/metabolismo , Parásitos/fisiología , Estructuras Animales/metabolismo , Animales , Drosophila/parasitología , Genoma de los Insectos , Especificidad del Huésped , Interacciones Huésped-Parásitos , Inmunidad , Masculino , Mucinas/química , Filogenia , Dominios Proteicos , Especificidad de la Especie , Avispas/genética , Avispas/inmunología , Avispas/fisiologíaRESUMEN
Antimicrobial peptides (AMPs) are effective molecules produced by the innate immune system of most organisms to fend off invading microbes and regarded as promising alternatives to conventional antibiotics due to their potent antimicrobial activities. The larvae of black soldier fly (BSF), Hermetia illucens, inhabit microbe-rich environments and its insect genome encodes a broad repertoire of AMPs. In the present study, three AMPs encoded by BSF Hidefensin-1, Hidiptericin-1 and HiCG13551 were cloned, expressed and purified in a recombinant Escherichia coli expression system. In vitro, both Hidefensin-1 and Hidiptericin-1 inhibited the growth of Streptococcus pneumoniae and Escherichia coli, while HiCG13551 inhibited the growth of Staphylococcus aureus and E. coli. Transmission electron microscopy showed that Hidiptericin-1 inhibited bacterial growth through bacterial membrane lysis. We also constructed a transgenic silkworm line constitutively expressing an AMP cassette HiAMP4516 encoding all the three AMPs, and the silkworms showed an increased resistance to both gram-positive and gram-negative entomopathogenic bacteria. These results provide insights into the antibacterial activities of BSF AMPs both in vitro and in vivo and suggest a great potential of exploiting insect-derived AMPs in silkworm disease resistance breeding.
Asunto(s)
Antibiosis/genética , Bombyx/genética , Dípteros/genética , Proteínas de Insectos/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Bombyx/metabolismo , Dípteros/metabolismo , Escherichia coli/fisiología , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Alineación de Secuencia , Staphylococcus aureus/fisiología , Streptococcus pneumoniae/fisiologíaRESUMEN
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is renowned for its bioconversion of organic waste into a sustainable source of animal feed. We report a high-quality genome of 1.1 Gb and a consensus set of 16,770 gene models for this beneficial species. Compared to those of other dipteran species, the BSF genome has undergone a substantial expansion in functional modules related to septic adaptation, including immune system factors, olfactory receptors, and cytochrome P450s. We further profiled midgut transcriptomes and associated microbiomes of BSF larvae fed with representative types of organic waste. We find that the pathways related to digestive system and fighting infection are commonly enriched and that Firmicutes bacteria dominate the microbial community in BSF across all diets. To extend its potential practical applications, we further developed an efficient CRISPR/Cas9-based gene editing approach and implemented this to yield flightless and enhanced feeding capacity phenotypes, both of which could expand BSF production capabilities. Our study provides valuable genomic and technical resources for optimizing BSF lines for industrialization.
Asunto(s)
Dípteros/genética , Genoma de los Insectos , Animales , Sistemas CRISPR-Cas , Dípteros/crecimiento & desarrollo , Dípteros/microbiología , Edición Génica , Genes de Insecto , Intestinos , Larva/microbiología , Microbiota , Reciclaje , Transcriptoma , ResiduosRESUMEN
Cholesterol plays essential roles in animal development and disease progression. Here, we characterize the evolutionary pattern of the canonical cholesterol biosynthesis pathway (CBP) in the animal kingdom using both genome-wide analyses and functional experiments. CBP genes in the basal metazoans were inherited from their last common eukaryotic ancestor and evolutionarily conserved for cholesterol biosynthesis. The genomes of both the basal metazoans and deuterostomes retain almost the full set of CBP genes, while Cnidaria and many protostomes have independently experienced multiple massive losses of CBP genes that might be due to the geologic events during the Ediacaran period, such as the appearance of an exogenous sterol supply and the frequent perturbation of ocean oxygenation. Meanwhile, the indispensable utilization processes of cholesterol potentially strengthened the maintenance of the complete set of CBP genes in vertebrates. These results strengthen both biotic and abiotic roles in the macroevolution of a biosynthesis pathway in animals.
RESUMEN
The cotton aphid Aphis gossypii Glover is a worldwide agricultural pest that feeds on cotton, melon, and other landscape plants, causing a high level of economic loss. In addition to the common characteristics shared with other aphids, Ap. gossypii has evolved multiple biotypes that present substantial differences in host adaption. These intriguing biological features are of interest from both a fundamental and applied perspective. However, the molecular studies of Ap. gossypii have been restrained by the lack of a reference genome. Furthermore, in order to establish a platform for the development of novel and sustainable control methods, it is necessary to generate genomic resources for Ap. gossypii. Here, we present a 294â¯Mb draft genome sequence of Ap. gossypii, which consists of 4,724 scaffolds with an N50 size of 438â¯kb. Compared to other aphid species with published genomes, Ap. gossypii presents the most compact genome size. A total of 14,694 protein-coding genes were predicted and annotated in the consensus gene set, 98.03% of CEGMA genes and 93.5% of BUSCO genes were captured respectively. Genome-wide selection analyses revealed that significantly evolving pathways in the genus Aphis are related to biological processes of detoxification, steroid biosynthesis, and ethylbenzene degradation. The acquisition of the genome of Ap. gossypii makes it possible to understand the molecular mechanism of intricate biological traits of this species, and will further facilitate the study of aphid evolution.
Asunto(s)
Áfidos/genética , Evolución Biológica , Genoma de los Insectos , Adaptación Biológica , Animales , Femenino , Familia de MultigenesRESUMEN
Sex determination has been studied in the model lepidopteran species Bombyx mori, but it remains poorly understood in lepidopteran pests. In the present study, we identified and characterized the Masculinizer (Masc) gene in a Noctuidae pest species, Agrotis ipsilon. Sequence analysis revealed that AiMasc encodes a protein of 658 amino acids that has two CCCH-type zinc finger domains and two conserved cysteine residues (Cys-277 and Cys-280). We assessed the masculinizing activity of AiMasc in BmN cells and found that AiMasc induced expression of the male-specific doublesex isoform. Disruption of Masc via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) in A. ipsilon caused abnormalities in abdominal segments and external genitalia, resulting in male-specific sterility. These results suggest that Masc participates in the process of sex determination in A. ipsilon. Successful identification of sex-determination gene in a pest species may enable the development of novel genetic approaches for pest control.
Asunto(s)
Proteínas de Insectos/fisiología , Mariposas Nocturnas/genética , Diferenciación Sexual , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistemas CRISPR-Cas , Femenino , Masculino , Mutación , FenotipoRESUMEN
The Silk Road, which derives its name from the trade of silk produced by the domestic silkworm Bombyx mori, was an important episode in the development and interaction of human civilizations. However, the detailed history behind silkworm domestication remains ambiguous, and little is known about the underlying genetics with respect to important aspects of its domestication. Here, we reconstruct the domestication processes and identify selective sweeps by sequencing 137 representative silkworm strains. The results present an evolutionary scenario in which silkworms may have been initially domesticated in China as trimoulting lines, then subjected to independent spreads along the Silk Road that gave rise to the development of most local strains, and further improved for modern silk production in Japan and China, having descended from diverse ancestral sources. We find that genes with key roles in nitrogen and amino acid metabolism may have contributed to the promotion of silk production, and that circadian-related genes are generally selected for their adaptation. We additionally identify associations between several candidate genes and important breeding traits, thereby advancing the applicable value of our resources.
Asunto(s)
Bombyx/genética , Domesticación , Animales , China , Ritmo Circadiano/genética , Evolución Molecular , Femenino , MasculinoRESUMEN
Many cockroach species have adapted to urban environments, and some have been serious pests of public health in the tropics and subtropics. Here, we present the 3.38-Gb genome and a consensus gene set of the American cockroach, Periplaneta americana. We report insights from both genomic and functional investigations into the underlying basis of its adaptation to urban environments and developmental plasticity. In comparison with other insects, expansions of gene families in P. americana exist for most core gene families likely associated with environmental adaptation, such as chemoreception and detoxification. Multiple pathways regulating metamorphic development are well conserved, and RNAi experiments inform on key roles of 20-hydroxyecdysone, juvenile hormone, insulin, and decapentaplegic signals in regulating plasticity. Our analyses reveal a high level of sequence identity in genes between the American cockroach and two termite species, advancing it as a valuable model to study the evolutionary relationships between cockroaches and termites.