Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nat Commun ; 15(1): 3213, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615060

RESUMEN

Oxidative stress-induced lipid accumulation is mediated by lipid droplets (LDs) homeostasis, which sequester vulnerable unsaturated triglycerides into LDs to prevent further peroxidation. Here we identify the upregulation of lipopolysaccharide-binding protein (LBP) and its trafficking through LDs as a mechanism for modulating LD homeostasis in response to oxidative stress. Our results suggest that LBP induces lipid accumulation by controlling lipid-redox homeostasis through its lipid-capture activity, sorting unsaturated triglycerides into LDs. N-acetyl-L-cysteine treatment reduces LBP-mediated triglycerides accumulation by phospholipid/triglycerides competition and Peroxiredoxin 4, a redox state sensor of LBP that regulates the shuttle of LBP from LDs. Furthermore, chronic stress upregulates LBP expression, leading to insulin resistance and obesity. Our findings contribute to the understanding of the role of LBP in regulating LD homeostasis and against cellular peroxidative injury. These insights could inform the development of redox-based therapies for alleviating oxidative stress-induced metabolic dysfunction.


Asunto(s)
Proteínas de Fase Aguda , Gotas Lipídicas , Glicoproteínas de Membrana , Proteínas de Fase Aguda/metabolismo , Proteínas Portadoras/metabolismo , Homeostasis , Gotas Lipídicas/metabolismo , Lipopolisacáridos/metabolismo , Glicoproteínas de Membrana/metabolismo , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Triglicéridos
2.
FASEB J ; 38(4): e23473, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334462

RESUMEN

Aging has a great impact on the liver, which causes a loss of physiological integrity and an increase in susceptibility to injury, but many of the underlying molecular and cellular processes remain unclear. Here, we performed a comprehensive single-cell transcriptional profiling of the liver during aging. Our data showed that aging affected the cellular composition of the liver. The increase in inflammatory cells including neutrophils and monocyte-derived macrophages, as well as in inflammatory cytokines, could indicate an inflammatory tissue microenvironment in aged livers. Moreover, aging drove a distinct transcriptional course in each cell type. The commonly significant up-regulated genes were S100a8, S100a9, and RNA-binding motif protein 3 across all cell types. Aging-related pathways such as biosynthesis, metabolism, and oxidative stress were up-regulated in aged livers. Additionally, key ligand-receptor pairs for intercellular communication, primarily linked to macrophage migration inhibitory factor, transforming growth factor-ß, and complement signaling, were also elevated. Furthermore, hepatic stellate cells (HSCs) serve as the prominent hub for intrahepatic signaling. HSCs acquired an "activated" phenotype, which may be involved in the increased intrahepatic vascular tone and fibrosis with aging. Liver sinusoidal endothelial cells derived from aged livers were pseudocapillarized and procontractile, and exhibited down-regulation of genes involved in vascular development and homeostasis. Moreover, the aging-related changes in cellular composition and gene expression were reversed by caloric restriction. Collectively, the present study suggests liver aging is linked to a significant liver sinusoidal deregulation and a moderate pro-inflammatory state, providing a potential concept for understanding the mechanism of liver aging.


Asunto(s)
Células Endoteliales , Análisis de Expresión Génica de una Sola Célula , Ratones , Animales , Hígado , Envejecimiento/genética , Envejecimiento/metabolismo , Transducción de Señal/fisiología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo
3.
Zool Res ; 45(1): 79-94, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38114435

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is associated with mutations in lipopolysaccharide-binding protein ( LBP), but the underlying epigenetic mechanisms remain understudied. Herein, LBP -/- rats with NAFLD were established and used to conduct integrative targeting-active enhancer histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation coupled with high-throughput and transcriptomic sequencing analysis to explore the potential epigenetic pathomechanisms of active enhancers of NAFLD exacerbation upon LBP deficiency. Notably, LBP -/- reduced the inflammatory response but markedly aggravated high-fat diet (HFD)-induced NAFLD in rats, with pronounced alterations in the histone acetylome and regulatory transcriptome. In total, 1 128 differential enhancer-target genes significantly enriched in cholesterol and fatty acid metabolism were identified between wild-type (WT) and LBP -/- NAFLD rats. Based on integrative analysis, CCAAT/enhancer-binding protein ß (C/EBPß) was identified as a pivotal transcription factor (TF) and contributor to dysregulated histone acetylome H3K27ac, and the lipid metabolism gene SCD was identified as a downstream effector exacerbating NAFLD. This study not only broadens our understanding of the essential role of LBP in the pathogenesis of NAFLD from an epigenetics perspective but also identifies key TF C/EBPß and functional gene SCD as potential regulators and therapeutic targets.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratas , Acetilación , Histonas/metabolismo , Lípidos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/veterinaria , Estearoil-CoA Desaturasa/metabolismo
4.
IEEE Trans Pattern Anal Mach Intell ; 45(7): 8494-8506, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37819797

RESUMEN

Human activity understanding is of widespread interest in artificial intelligence and spans diverse applications like health care and behavior analysis. Although there have been advances with deep learning, it remains challenging. The object recognition-like solutions usually try to map pixels to semantics directly, but activity patterns are much different from object patterns, thus hindering another success. In this article, we propose a novel paradigm to reformulate this task in two-stage: first mapping pixels to an intermediate space spanned by atomic activity primitives, then programming detected primitives with interpretable logic rules to infer semantics. To afford a representative primitive space, we build a knowledge base including 26+ M primitive labels and logic rules from human priors or automatic discovering. Our framework, Human Activity Knowledge Engine (HAKE), exhibits superior generalization ability and performance upon canonical methods on challenging benchmarks. Code and data are available at http://hake-mvig.cn/.


Asunto(s)
Inteligencia Artificial , Gadiformes , Humanos , Animales , Algoritmos , Bases del Conocimiento , Actividades Humanas
5.
Front Behav Neurosci ; 17: 1111908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324523

RESUMEN

Computer vision has emerged as a powerful tool to elevate behavioral research. This protocol describes a computer vision machine learning pipeline called AlphaTracker, which has minimal hardware requirements and produces reliable tracking of multiple unmarked animals, as well as behavioral clustering. AlphaTracker pairs a top-down pose-estimation software combined with unsupervised clustering to facilitate behavioral motif discovery that will accelerate behavioral research. All steps of the protocol are provided as open-source software with graphic user interfaces or implementable with command-line prompts. Users with a graphical processing unit (GPU) can model and analyze animal behaviors of interest in less than a day. AlphaTracker greatly facilitates the analysis of the mechanism of individual/social behavior and group dynamics.

6.
IEEE Trans Pattern Anal Mach Intell ; 45(6): 7157-7173, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37145952

RESUMEN

Accurate whole-body multi-person pose estimation and tracking is an important yet challenging topic in computer vision. To capture the subtle actions of humans for complex behavior analysis, whole-body pose estimation including the face, body, hand and foot is essential over conventional body-only pose estimation. In this article, we present AlphaPose, a system that can perform accurate whole-body pose estimation and tracking jointly while running in realtime. To this end, we propose several new techniques: Symmetric Integral Keypoint Regression (SIKR) for fast and fine localization, Parametric Pose Non-Maximum-Suppression (P-NMS) for eliminating redundant human detections and Pose Aware Identity Embedding for jointly pose estimation and tracking. During training, we resort to Part-Guided Proposal Generator (PGPG) and multi-domain knowledge distillation to further improve the accuracy. Our method is able to localize whole-body keypoints accurately and tracks humans simultaneously given inaccurate bounding boxes and redundant detections. We show a significant improvement over current state-of-the-art methods in both speed and accuracy on COCO-wholebody, COCO, PoseTrack, and our proposed Halpe-FullBody pose estimation dataset. Our model, source codes and dataset are made publicly available at https://github.com/MVIG-SJTU/AlphaPose.


Asunto(s)
Algoritmos , Postura , Humanos
8.
BMC Infect Dis ; 22(1): 764, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180859

RESUMEN

BACKGROUND: Recently, with the rapid progress of metagenomic next-generation sequencing (mNGS), inconsistency between mNGS results and clinical diagnoses has become more common. There is currently no reasonable explanation for this, and the interpretation of mNGS reports still needs to be standardised. METHODS: A retrospective analysis was conducted on 47 inpatients with suspected central nervous system (CNS) infections, and clinical data were recorded. The final diagnosis was determined by an expert group based on the patient's clinical manifestation, laboratory examination, and response to treatment. mNGS results were compared with the final diagnosis, and any inconsistencies that occurred were investigated. Finally, the credibility of mNGS results was evaluated using the integral approach, which consists of three parts: typical clinical features, positive results with the traditional method, and cerebrospinal fluid cells ≥ 100 (× 106/L) or protein ≥ 500 mg/L, with one point for each item. RESULTS: Forty-one patients with suspected CNS infection were assigned to infected (ID, 31/41, 75.61%) and non-infected groups (NID, 10/41, 24.39%) after assessment by a panel of experts according to the composite diagnostic criteria. For mNGS-positive results, 20 of the 24 pathogens were regarded as contaminants when the final score was ≤ 1. The remaining 11 pathogens detected by mNGS were all true positives, which was consistent with the clinical diagnosis when the score was ≥ 2. For mNGS negative results, when the score was ≥ 2, the likelihood of infection may be greater than when the score is ≤ 1. CONCLUSION: The integral method is effective for evaluating mNGS results. Regardless of whether the mNGS result was positive or negative, the possibility of infection was greater when the score was ≥ 2. A negative mNGS result does not necessarily indicate that the patient was not clinically infected, and, therefore, clinical features are more important.


Asunto(s)
Infecciones del Sistema Nervioso Central , Metagenómica , Infecciones del Sistema Nervioso Central/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Metagenómica/métodos , Estudios Retrospectivos , Sensibilidad y Especificidad
9.
Nature ; 603(7902): 667-671, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296862

RESUMEN

Most social species self-organize into dominance hierarchies1,2, which decreases aggression and conserves energy3,4, but it is not clear how individuals know their social rank. We have only begun to learn how the brain represents social rank5-9 and guides behaviour on the basis of this representation. The medial prefrontal cortex (mPFC) is involved in social dominance in rodents7,8 and humans10,11. Yet, precisely how the mPFC encodes relative social rank and which circuits mediate this computation is not known. We developed a social competition assay in which mice compete for rewards, as well as a computer vision tool (AlphaTracker) to track multiple, unmarked animals. A hidden Markov model combined with generalized linear models was able to decode social competition behaviour from mPFC ensemble activity. Population dynamics in the mPFC predicted social rank and competitive success. Finally, we demonstrate that mPFC cells that project to the lateral hypothalamus promote dominance behaviour during reward competition. Thus, we reveal a cortico-hypothalamic circuit by which the mPFC exerts top-down modulation of social dominance.


Asunto(s)
Hipotálamo , Corteza Prefrontal , Animales , Área Hipotalámica Lateral , Ratones , Recompensa , Conducta Social
10.
Mol Ther Nucleic Acids ; 27: 535-546, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35036064

RESUMEN

Tumor cells actively release large quantities of exosomes, which pivotally participate in the regulation of cancer biology, including head and neck cancer (HNC). Exosome biogenesis and release are complex and elaborate processes that are considered to be similar to the process of exocyst-mediated vesicle delivery. By analyzing the expression of exocyst subunits and their role in patients with HNC, we aimed to identify exocyst and its functions in exosome biogenesis and investigate the molecular mechanisms underlying the regulation of exosome transport in HNC cells. We observed that exocysts were highly expressed in HNC cells and could promote exosome secretion in these cells. In addition, downregulation of exocyst expression inhibited HN4 cell proliferation by reducing exosome secretion. Interestingly, immunofluorescence and electron microscopy revealed the accumulation of multivesicular bodies (MVBs) after the knockdown of exocyst. Autophagy, the major pathway of exosome degradation, is not activated by this intracellular accumulation of MVBs, but these MVBs are consumed when autophagy is activated under the condition of cell starvation. Rab11a, a small GTPase that is involved in MVB fusion, also interacted with the exocyst. These findings suggest that the exocyst can regulate exosome biogenesis and participate in the malignant behavior of tumor cells.

11.
Aging Cell ; 21(1): e13532, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34905649

RESUMEN

The "rejuvenating" effect of growth differentiation factor 11 (GDF11) is called into question recently, and its role, as well as plausible signaling mechanisms in liver senescence, is unclear. To overexpress or knockdown GDF11, aged male mice are injected with a single dose of adeno-associated viruses-GDF11 or adenovirus-small hairpin RNA-GDF11, respectively. GDF11 overexpression significantly accelerates liver senescence in aged mice, whereas GDF11 knockdown has opposite effects. Concomitantly, autophagic flux is impaired in livers from GDF11 overexpression mice. Conversely, GDF11 knockdown increases autophagic flux. Moreover, rapamycin successfully restores the impaired autophagic flux and alleviates liver senescence in GDF11 overexpression mice, while the GDF11 knockdown-mediated benefits are abolished by the autophagy inhibitor bafilomycin A1. GDF11 leads to a drop in lysosomal biogenesis resulting in defective autophagic flux at autophagosome clearance step. Mechanistically, GDF11 significantly activates mammalian target of rapamycin complex 1 (mTORC1) and subsequently represses transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy. Inhibition of mTORC1 or TFEB overexpression rescues the GDF11-impaired autophagic flux and cellular senescence. Hepatocyte-specific deletion of GDF11 does not alter serum GDF11 levels and liver senescence. Collectively, suppression of autophagic activity via mTORC1/TFEB signaling may be a critical molecular mechanism by which GDF11 exacerbates liver senescence. Rather than a "rejuvenating" agent, GDF11 may have a detrimental effect on liver senescence.


Asunto(s)
Autofagia/genética , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Hígado/patología , Lisosomas/efectos de los fármacos , Animales , Senescencia Celular , Humanos , Masculino , Ratones
12.
Front Immunol ; 12: 681810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295331

RESUMEN

Inflammation, which is induced by the immune response, is recognized as the driving factor in many diseases, including infections and inflammatory diseases, metabolic disorders and cancers. Genetic variations in pivotal genes associated with the immune response, particularly single nucleotide polymorphisms (SNPs), may account for predisposition and clinical outcome of diseases. Lipopolysaccharide (LPS)-binding protein (LBP) functions as an enhancer of the host response to LPS, the main component of the outer membrane of gram-native bacteria. Given the crucial role of LBP in inflammation, we will review the impact of SNPs in the LBP gene on infections and inflammatory diseases, metabolic disorders and cancers.


Asunto(s)
Proteínas de Fase Aguda/genética , Proteínas Portadoras/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glicoproteínas de Membrana/genética , Polimorfismo de Nucleótido Simple , Proteínas de Fase Aguda/metabolismo , Alelos , Animales , Proteínas Portadoras/metabolismo , Enfermedades Transmisibles/etiología , Enfermedades Transmisibles/metabolismo , Genotipo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Glicoproteínas de Membrana/metabolismo , Enfermedades Metabólicas/diagnóstico , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
13.
Shock ; 56(6): 1066-1079, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33988537

RESUMEN

OBJECTIVES: To explore the role of LPS binding protein (LBP) in metabolism and optimize sepsis treatment. DESIGN: A sepsis model was established by injecting LPS into LBP-/- rats and WT rats and observing changes in the liver over time (0, 1, 6, and 24 h). SETTING: Detecting liver inflammation and injury. Optimizing the treatment of sepsis. SUBJECTS: WT rats and LBP-/- rats. INTERVENTIONS: We established a sepsis model by injecting LPS intravenously. MEASUREMENTS AND MAIN RESULTS: First, we induced sepsis in WT and LBP-/- rats with LPS. The rats were sacrificed, and serum and liver samples were collected at 1, 6, and 24 h after LPS injection. We found that the deletion of LBP reduced LPS-induced liver inflammation and injury at 1 and 6 h. Ballooning degeneration was clearly present in LBP-/- rat livers at 24 h after LPS injection. We found that mitochondrial damage and reactive oxygen species (ROS) levels were higher in LBP-/- rat livers than in WT rat livers at 24 h after LPS injection. According to the transcriptomic results, the peroxisome proliferator-activated receptor (PPAR) pathway may be the reason for lesions in LBP-/- rats. To further investigate the function of PPARα in sepsis, we inhibited mTOR with rapamycin and examined mitochondrial injury and ROS levels. The levels of mitochondrial damage and ROS were reduced after LBP-/- rats were pretreated with rapamycin in the context of LPS-induced sepsis. Inhibiting CYP4a2, one of the PPARα-target gene products, reduced the level of LPS-induced ROS in LBP-/- rats. CONCLUSION: LBP protects hepatic mitochondria against LPS-induced damage via the LBP-PPARα-CYP4a2 signaling pathway.


Asunto(s)
Proteínas de Fase Aguda/fisiología , Proteínas Portadoras/fisiología , Sistema Enzimático del Citocromo P-450/fisiología , Glicoproteínas de Membrana/fisiología , Mitocondrias Hepáticas/metabolismo , Receptores Activados del Proliferador del Peroxisoma/fisiología , Sepsis/metabolismo , Transducción de Señal/fisiología , Animales , Modelos Animales de Enfermedad , Ratas
14.
Artículo en Inglés | MEDLINE | ID: mdl-33888544

RESUMEN

INTRODUCTION: Diabetes-associated endothelial barrier function impairment might be linked to disturbances in Ca2+ homeostasis. To study the role and molecular mechanism of Orais-vascular endothelial (VE)-cadherin signaling complex and its downstream signaling pathway in diabetic endothelial injury using mouse aortic endothelial cells (MAECs). RESEARCH DESIGN AND METHODS: The activity of store-operated Ca2+ entry (SOCE) was detected by calcium imaging after 7 days of high-glucose (HG) or normal-glucose (NG) exposure, the expression levels of Orais after HG treatment was detected by western blot analysis. The effect of HG exposure on the expression of phosphorylated (p)-VE-cadherin and VE-cadherin on cell membrane was observed by immunofluorescence assay. HG-induced transendothelial electrical resistance was examined in vitro after MAECs were cultured in HG medium. FD-20 permeability was tested in monolayer aortic endothelial cells through transwell permeability assay. The interactions between Orais and VE-cadherin were detected by co-immunoprecipitation and immunofluorescence technologies. Immunohistochemical experiment was used to detect the expression changes of Orais, VE-cadherin and p-VE-cadherin in aortic endothelium of mice with diabetes. RESULTS: (1) The expression levels of Orais and activity of SOCE were significantly increased in MAECs cultured in HG for 7 days. (2) In MAECs cultured in HG for 7 days, the ratio of p-VE-cadherin to VE-cadherin expressed on the cell membrane and the FD-20 permeability in monolayer endothelial cells increased, indicating that intercellular permeability increased. (3) Orais and VE-cadherin can interact and enhance the interaction ratio through HG stimulation. (4) In MAECs cultured with HG, the SOCE activator ATP enhanced the expression level of p-VE-cadherin, and the SOCE inhibitor BTP2 decreased the expression level of p-VE-cadherin. (5) Significantly increased expression of p-VE-cadherin and Orais in the aortic endothelium of mice with diabetes. CONCLUSION: HG exposure stimulated increased expression of Orais in endothelial cells, and increased VE-cadherin phosphorylation through Orais-VE-cadherin complex and a series of downstream signaling pathways, resulting in disruption of endothelial cell junctions and initiation of atherosclerosis.


Asunto(s)
Cadherinas , Canales de Calcio Activados por la Liberación de Calcio , Células Endoteliales , Animales , Antígenos CD , Células Cultivadas , Glucosa , Ratones , Permeabilidad , Transducción de Señal
15.
J Inflamm Res ; 14: 1551-1561, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907436

RESUMEN

BACKGROUND: High-mobility group box-1 protein (HMGB1) serves as the prototypic damage-associated molecular pattern molecule, and TLR4 is considered a receptor for HMGB1. Regulatory T cells (Tregs) play a crucial role in infectious diseases. The role of HMGB1 in the modulation of Tregs is of great interest. METHODS: Serum HMGB1 and Treg proportions were detected in 58 patients with acute lung injury (ALI) and 36 healthy volunteers. The correlations of these parameters with disease severity were analyzed. The WT and TLR4-/- mice were administered HMGB1 by intratracheal injection. After 48 h, the mice were sacrificed. The morphological changes and wet/dry ratio of the lung were measured. Spleen CD4+CD25+ Tregs were sorted from spleen cells, the expression of FOXP3 and CTLA-4, and releasing of cytokines was detected. CD4+CD25+ Tregs were cocultured with effector T cells, the inhibitory effect, and release of cytokines was detected. RESULTS: Significantly increased plasma levels of HMGB1 and reduced CD4+CD25+CD127low Tregs were detected in ALI patients. In the mouse model, lung injury was significantly increased after HMGB1 instillation in the WT and TLR4-/- groups compared with control group. The lung wet/dry ratio and the TNF-α and IL-1ß contents in BALF were significantly increased, and the severity of WT mice was higher than that of TLR4-/- mice. The expression of FOXP3 and CTLA-4 in TLR4-/- mice was significantly increased compared with that in WT mice and was associated with a similar trend of IL-10 and TGF-ß levels (p<0.05). In coculture with effector T cells, Tregs isolated from TLR4-/- mice exhibited decreased IL-2 and IFN-γ and increased IL-4 levels compared with Tregs from WT mice. Increased polarization of TLR4-/- CD4+CD25+ Treg cells to Th2 cells was observed. CONCLUSION: In HMGB1-induced lung injury, HMGB1 affects the expression of FOXP3 and CTLA-4 through TLR4, thus reducing the immunosuppressive function of Treg cells.

16.
J Diabetes Res ; 2021: 9526701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33490288

RESUMEN

The induction of inflammation and cytokine storm was proposed to play a critical role in COVID-19. This study is aimed at investigating the relationship between glucose metabolism and the inflammatory state of inpatients with COVID-19. 71 inpatients with COVID-19 were classified into nondiabetes mellitus (NDM) group, impaired fasting glucose (IFG) group, and diabetes mellitus (DM) group. The average hospitalization days were significantly shorter in DM patients when compared with patients in the IFG group and NDM group. CD4+ T cell percentage was higher while CD8+ T cells percentage was lower in the DM group than those in the NDM group. The serum levels of IL-6, IL-2, IL-10, and INF-γ in the DM group were upregulated when compared with those in the NDM group. The serum levels of TNF-α, IL-4, IL-2, IL-10, and INF-γ were significantly higher in the DM group than those in the IFG group. A significant difference was observed in CD4+ T cell, CD4+/CD8+ ratio percentage, IL-6, and IL-10 between the NDM group and DM group with adjusted BMI. In conclusion, COVID-19 patients with elevated glucose levels have promoted cytokine profiles and immune response.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Citocinas/inmunología , Diabetes Mellitus Tipo 2/inmunología , Mediadores de Inflamación/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Biomarcadores/sangre , Glucemia/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , COVID-19/sangre , COVID-19/epidemiología , COVID-19/virología , Citocinas/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/sangre , Tiempo de Internación , Masculino , Persona de Mediana Edad , Pronóstico , Factores de Tiempo
17.
J Immunol Res ; 2021: 8356645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35005033

RESUMEN

Sepsis is an organ dysfunction caused by the dysregulated inflammatory response to infection. Lipopolysaccharide-binding protein (LBP) binds to lipopolysaccharide (LPS) and modulates the inflammatory response. A rare systematic study has been reported to detect the effect of LBP gene during LPS-induced sepsis. Herein, we explored the RNA sequencing technology to profile the transcriptomic changes in liver tissue between LBP-deficient rats and WT rats at multiple time points after LPS administration. We proceeded RNA sequencing of liver tissue to search differentially expressed genes (DEGs) and enriched biological processes and pathways between WT and LBP-deficient groups at 0 h, 6 h, and 24 h. In total, 168, 284, and 307 DEGs were identified at 0 h, 6 h, and 24 h, respectively, including Lrp5, Cyp7a1, Nfkbiz, Sigmar1, Fabp7, and Hao1, which are related to the inflammatory or lipid-related process. Functional enrichment analysis revealed that inflammatory response to LPS mediated by Ifng, Cxcl10, Serpine1, and Lbp was enhanced at 6 h, while lipid-related metabolism associated with C5, Cyp4a1, and Eci1 was enriched at 24 h after LPS administration in the WT samples. The inflammatory process was not found when the LBP gene was knocked out; lipid-related metabolic process and peroxisome proliferator-activated receptor (PPAR) signaling pathway mediated by Dhrs7b and Tysnd1 were significantly activated in LBP-deficient samples. Our study suggested that the invading LPS may interplay with LBP to activate the nuclear factor kappa B (NF-κB) signaling pathway and trigger uncontrolled inflammatory response. However, when inhibiting the activity of NF-κB, lipid-related metabolism would make bacteria removal via the effect on the PPAR signaling pathway in the absence of LBP gene. We also compared the serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels using the biochemistry analyzer and analyzed the expression of high mobility group box 1 (HMGB1) and cleaved-caspase 3 with immunohistochemistry, which further validated our conclusion.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Proteínas Portadoras/metabolismo , Hepatopatías/inmunología , Hígado/fisiología , Glicoproteínas de Membrana/metabolismo , Sepsis/inmunología , Proteínas de Fase Aguda/genética , Animales , Proteínas Portadoras/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Inflamación/genética , Metabolismo de los Lípidos/genética , Lipopolisacáridos/inmunología , Hepatopatías/genética , Masculino , Glicoproteínas de Membrana/genética , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Sepsis/genética
18.
Front Genet ; 11: 574167, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505421

RESUMEN

Epigenetic regulation of gene expression has been reported in the pathogenesis of metabolic disorders such as diabetes and liver steatosis in humans. However, the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in chickens have been rarely studied. H3K27ac chromatin immunoprecipitation coupled with high-throughput sequencing and high-throughput RNA sequencing was performed to compare genome-wide H3K27ac profiles and transcriptomes of liver tissue between healthy and FLHS chickens. In total, 1,321 differential H3K27ac regions and 443 differentially expressed genes were identified (| log2Fold change| ≥ 1 and P-value ≤ 0.05) between the two groups. Binding motifs for transcription factors involved in immune processes and metabolic homeostasis were enriched among those differential H3K27ac regions. Differential H3K27ac peaks were associated with multiple known FLHS risk genes, involved in lipid and energy metabolism (PCK1, APOA1, ANGPTL4, and FABP1) and the immune system (FGF7, PDGFRA, and KIT). Previous studies and our current results suggested that the high-energy, low-protein (HELP) diet might have an impact on histone modification and chromatin structure, leading to the dysregulation of candidate genes and the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which causes excessive accumulation of fat in the liver tissue and induces the development of FLHS. These findings highlight that epigenetic modifications contribute to the regulation of gene expression and play a central regulatory role in FLHS. The PPAR signaling pathway and other genes implicated in FLHS are of great importance for the development of novel and specific therapies for FLHS-susceptible commercial laying hens.

20.
Front Immunol ; 10: 1612, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31402909

RESUMEN

Sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) remains the leading complication for mortality caused by bacterial infection. The regulatory T (Treg) cells appear to be an important modulator in resolving lung injury. Despite the extensive studies, little is known about the role of macrophage HMGB1/PTEN/ß-catenin signaling in Treg development during ALI. Objectives: This study was designed to determine the roles and molecular mechanisms of HMGB1/PTEN/ß-catenin signaling in mediating CD4+CD25+Foxp3+ Treg development in sepsis-induced lung injury in mice. Setting: University laboratory research of First Affiliated Hospital of Anhui Medical University. Subjects: PTEN/ß-catenin Loxp and myeloid-specific knockout mice. Interventions: Groups of PTENloxp/ß-cateninloxp and myeloid-specific PTEN/ß-catenin knockout (PTENM-KO/ß-cateninM-KO) mice were treated with LPS or recombinant HMGB1 (rHMGB1) to induce ALI. The effects of HMGB1-PTEN axis were further analyzed by in vitro co-cultures. Measures and Main Results: In a mouse model of ALI, blocking HMGB1 or myeloid-specific PTEN knockout (PTENM-KO) increased animal survival/body weight, reduced lung damage, increased TGF-ß production, inhibited the expression of RORγt and IL-17, while promoting ß-catenin signaling and increasing CD4+CD25+Foxp3+ Tregs in LPS- or rHMGB-induced lung injury. Notably, myeloid-specific ß-catenin ablation (ß-cateninM-KO) resulted in reduced animal survival and increased lung injury, accompanied by reduced CD4+CD25+Foxp3+ Tregs in rHMGB-induced ALI. Furthermore, disruption of macrophage HMGB1/PTEN or activation of ß-catenin significantly increased CD4+CD25+Foxp3+ Tregs in vitro. Conclusions: HMGB1/PTEN/ß-catenin signaling is a novel pathway that regulates Treg development and provides a potential therapeutic target in sepsis-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Proteína HMGB1/metabolismo , Inmunomodulación , Fosfohidrolasa PTEN/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , beta Catenina/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inmunofenotipificación , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/efectos adversos , Activación de Linfocitos , Ratones , Ratones Transgénicos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA