Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Environ Toxicol Pharmacol ; 103: 104276, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37717721

RESUMEN

Evidence of impact of ambient oxidant pollution on cardiometabolic responses remains limited. We aimed to examine associations of oxidant pollutants with cardiometabolic responses, and effect modification by ceramides. During 2019-2020, 152 healthy adults were visited 4 times in Beijing, China, and indicators of ceramides, glucose homeostasis, and vascular function were measured. We found significant increases in ceramides of 13.9% (p = 0.020) to 110.1% (p = 0.005) associated with an interquartile increase in oxidant pollutants at prior 1-7 days. Exposure to oxidant pollutants was also related to elevations in insulin and reductions in adiponectin, and elevations in systolic and diastolic blood pressure. Further, stratified analyses revealed larger changes in oxidant pollutant related cardiometabolic responses among participants with higher ceramide levels compared to those with lower levels. Our findings suggested cardiometabolic effects associated with exposure to oxidant pollutants, which may be modified by ceramide levels.

2.
Proc Natl Acad Sci U S A ; 120(40): e2302851120, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748076

RESUMEN

Sequentially managing the coverage and dimerization of *CO on the Cu catalysts is desirable for industrial-current-density CO2 reduction (CO2R) to C2+, which required the multiscale design of the surface atom/architecture. However, the oriented design is colossally difficult and even no longer valid due to unpredictable reconstruction. Here, we leverage the synchronous leaching of ligand molecules to manipulate the seeding-growth process during CO2R reconstruction and construct Cu arrays with favorable (100) facets. The gradient diffusion in the reconstructed array guarantees a higher *CO coverage, which can continuously supply the reactant to match its high-rate consumption for high partial current density for C2+. Sequentially, the lower energy barriers of *CO dimerization on the (100) facets contribute to the high selectivity of C2+. Profiting from this sequential *CO management, the reconstructed Cu array delivers an industrial-relevant FEC2+ of 86.1% and an FEC2H4 of 60.8% at 700 mA cm-2. Profoundly, the atomic-molecular scale delineation for the evolution of catalysts and reaction intermediates during CO2R can undoubtedly facilitate various electrocatalytic reactions.

3.
Geohealth ; 7(8): e2023GH000820, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37534336

RESUMEN

Carbon loading in airway cells has shown to worsen function of antimicrobial peptides, permitting increased survival of pathogens in the respiratory tract; however, data on the impacts of carbon particles on childhood acute respiratory infection (ARI) is limited. We assembled daily health data on outpatient visits for ARI (bronchitis, pneumonia, and total upper respiratory infection [TURI]) in children aged 0-14 years between 2015 and 2019 in Beijing, China. Anthropogenic carbons, including black carbon (BC) and its emission sources, and wood smoke particles (delta carbon, ultra-violet absorbing particulate matter, and brown carbon) were continuously monitored. Using a time-stratified case-crossover approach, conditional logistic regression was performed to derive risk estimates for each outcome. A total of 856,899 children were included, and a wide range of daily carbon particle concentrations was observed, with large variations for BC (0.36-20.44) and delta carbon (0.48-57.66 µg/m3). Exposure to these particles were independently associated with ARI, with nearly linear exposure-response relationships. Interquartile range increases in concentrations of BC and delta carbon over prior 0-8 days, we observed elevation of the odd ratio of bronchitis by 1.201 (95% confidence interval, 1.180, 1.221) and 1.048 (95% CI, 1.039, 1.057), respectively. Stronger association was observed for BC from traffic sources, which increased the odd ratio of bronchitis by 1.298 (95% CI, 1.273, 1.324). Carbon particles were also associated with elevated risks of pneumonia and TURI, and subgroup analyses indicated greater risks among children older than 6 years. Our findings suggested that anthropogenic carbons in metropolitan areas may pose a significant threat to clinical manifestations of respiratory infections in vulnerable populations.

4.
Lab Chip ; 23(12): 2766-2777, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37194324

RESUMEN

Biomolecular imaging of intracellular structures of a single cell and subsequent screening of the cells are of high demand in metabolic engineering to develop strains with the desired phenotype. However, the capability of current methods is limited to population-scale identification of cell phenotyping. To address this challenge, we propose to utilize dispersive phase microscopy incorporated with a droplet-based microfluidic system that combines droplet volume-on-demand generation, biomolecular imaging, and droplet-on-demand sorting, to achieve high-throughput screening of cells with an identified phenotype. Particularly, cells are encapsulated in homogeneous environments with microfluidic droplet formation, and the biomolecule-induced dispersive phase can be investigated to indicate the biomass of a specific metabolite in a single cell. The retrieved biomass information consequently guides the on-chip droplet sorting unit to screen cells with the desired phenotype. To demonstrate the proof of concept, we showcase the method by promoting the evolution of the Haematococcus lacustris strain toward a high production of natural antioxidant astaxanthin. The validation of the proposed system with on-chip single-cell imaging and droplet manipulation functionalities reveals the high-throughput single-cell phenotyping and selection potential that applies to many other biofactory scenarios, such as biofuel production, critical quality attribute control in cell therapy, etc.


Asunto(s)
Microfluídica , Microscopía , Microfluídica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Dispositivos Laboratorio en un Chip
5.
Environ Sci Technol ; 56(15): 10868-10878, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35834827

RESUMEN

Evidence of the respiratory effects of ambient organic aerosols (e.g., polycyclic aromatic hydrocarbons, PAHs) among patients with chronic diseases is limited. We aimed to assess whether exposure to ambient particle-bound PAHs could worsen small airway functions in patients with chronic obstructive pulmonary disease (COPD) and elucidate the underlying mechanisms involved. Forty-five COPD patients were recruited with four repeated visits in 2014-2015 in Beijing, China. Parameters of pulmonary function and pulmonary/systemic inflammation and oxidative stress were measured at each visit. Linear mixed-effect models were performed to evaluate the associations between PAHs and measurements. In this study, participants experienced an average PAH level of 61.7 ng/m3. Interquartile range increases in exposure to particulate PAHs at prior up to 7 days were associated with reduced small airway functions, namely, decreases of 17.7-35.5% in forced maximal mid-expiratory flow. Higher levels of particulate PAHs were also associated with heightened lung injury and inflammation and oxidative stress. Stronger overall effects were found for PAHs from traffic emissions and coal burning. Exposure to ambient particulate PAHs was capable of impairing small airway functions in elderly patients with COPD, potentially via inflammation and oxidative stress. These findings highlight the importance of control efforts on organic particulate matter from fossil fuel combustion emissions.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Enfermedad Pulmonar Obstructiva Crónica , Anciano , Contaminantes Atmosféricos/análisis , China , Carbón Mineral , Polvo , Monitoreo del Ambiente , Humanos , Inflamación , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Aerosoles y Gotitas Respiratorias
6.
Angew Chem Int Ed Engl ; 61(35): e202206077, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35730919

RESUMEN

Manipulating the catalyst-electrolyte interface to push reactants into the inner Helmholtz plane (IHP) is highly desirable for efficient electrocatalysts, however, it has rarely been implemented due to the elusive electrochemical IHP and inherent inert catalyst surface. Here, we propose the introduction of local force fields by the surface hydroxyl group to engineer the electrochemical microenvironment and enhance alkaline hydrogen evolution activity. Taking a hydroxyl group immobilized Ni/Ni3 C heterostructure as a prototype, we reveal that the local hydrogen bond induced by the surface hydroxyl group drags 4-coordinated hydrogen-bonded H2 O molecules across the IHP to become free H2 O and thus continuously supply reactants forcatalytic sites catalytic sites. In addition, the hydroxyl group coupled with the Ni/Ni3 C heterostructure further lowers the water dissociation energy by polarization effects. As a direct outcome, hydroxyl-rich catalysts surpass Pt/C activity at high current density (500 mA cm-2 @ ≈276 mV) in alkaline medium.

7.
Int J Hyg Environ Health ; 242: 113973, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35447399

RESUMEN

BACKGROUND: Ambient particles have been associated with gestational diabetes mellitus (GDM), however, no study has evaluated the effects of traffic-related ambient particles on the risks of GDM subgroups classified by oral glucose tolerance test (OGTT) values. METHODS: A retrospective analysis was conducted among 24,001 pregnant women who underwent regular prenatal care and received OGTT at Haidian Maternal and Child Health Hospital in Beijing, China, 2014-2017. A total of 3,168 (13.2%) pregnant women were diagnosed with GDM, including 1,206 with isolated fasting hyperglycaemia (GDM-IFH). At a fixed-location monitoring station, routinely monitored ambient particles included fine particulate matter (PM2.5), black carbon (BC) and particles in size ranges of 5-560 nm (PNC5-560). Contributions of PNC5-560 sources were apportioned by positive matrix factorization model. Logistic regression model was applied to estimate odds ratio (OR) of ambient particles on GDM risk. RESULTS: Among the 24,001 pregnancy women recruited in this study, 3,168 (13.2%) were diagnosed with GDM, including 1,206 with isolated fasting hyperglycaemia (GDM-IFH) and 1,295 with isolated post-load hyperglycaemia (GDM-IPH). We observed increased GDM-IFH risk with per interquartile range increase in first-trimester exposures to PM2.5 (OR = 1.94; 95% Confidence Intervals: 1.23-3.07), BC (OR = 2.14; 1.73-2.66) and PNC5-560 (OR = 2.46; 1.90-3.19). PNC5-560 originated from diesel and gasoline vehicle emissions were found in associations with increases in GDM-IFH risk, but not in GDM-IPH risk. CONCLUSION: Our findings suggest that exposure to traffic-related ambient particles may increase GDM risk by exerting adverse effects on fasting glucose levels during pregnancy, and support continuing efforts to reduce traffic emissions for protecting vulnerable population who are at greater risk of glucose metabolism disorder.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Diabetes Gestacional , Hiperglucemia , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing/epidemiología , Glucemia/análisis , Niño , Diabetes Gestacional/inducido químicamente , Diabetes Gestacional/epidemiología , Ayuno , Femenino , Humanos , Hiperglucemia/epidemiología , Exposición Materna/efectos adversos , Material Particulado/análisis , Embarazo , Estudios Retrospectivos
8.
Sci Total Environ ; 827: 154210, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35240186

RESUMEN

AIMS: Evidence on the impacts of traffic-related air pollution (TRAP) on ST-segment elevation myocardial infarction (STEMI) events is limited. We aimed to assess the acute effects of TRAP exposure on the clinical onset of STEMI and related cardiac impairments. METHODS AND RESULTS: We recruited patients who were admitted for STEMI and underwent primary percutaneous coronary intervention at Peking University Third Hospital between 2014 and 2020. Indicators relevant to cardiac impairments were measured. Concomitantly, hourly concentrations of traffic pollutants were monitored throughout the study period, including fine particulate matter, black carbon (BC), particles in size ranges of 5-560 nm, oxides of nitrogen (NOX), nitrogen dioxide, and carbon monoxide. The mean (SD) age of participants was 62.4 (12.5) years. Daily average (range) concentrations of ambient BC and NOX were 3.9 (0.1-25.0) µg/m3 and 90.8 (16.6-371.7) µg/m3. Significant increases in STEMI risks of 5.9% (95% CI: 0.1, 12.0) to 21.9% (95% CI: 6.0, 40.2) were associated with interquartile range increases in exposure to TRAP within a few hours. These changes were accompanied by significant elevations in cardiac troponin T levels of 6.9% (95% CI: 0.2, 14.1) to 41.7% (95% CI: 21.2, 65.6), as well as reductions in left ventricular ejection fraction of 1.5% (95% CI: 0.1, 2.9) to 3.7% (95% CI: 0.8, 6.4). Furthermore, the associations were attenuated in participants living in areas with higher residential greenness levels. CONCLUSIONS: Our findings extend current understanding that short-term exposure to higher levels of traffic pollution was associated with increased STEMI risks and exacerbated cardiac impairments, and provide evidence on traffic pollution control priority for protecting vulnerable populations who are at greater risks of cardiovascular events.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infarto del Miocardio con Elevación del ST , Contaminación por Tráfico Vehicular , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Humanos , Persona de Mediana Edad , Material Particulado/análisis , Infarto del Miocardio con Elevación del ST/epidemiología , Volumen Sistólico , Contaminación por Tráfico Vehicular/efectos adversos , Función Ventricular Izquierda
9.
J Oral Microbiol ; 14(1): 2046309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251525

RESUMEN

BACKGROUND: Streptococcus mutans (S. mutans) is a potential pathogenic bacteria of dental caries. However, the level of S. mutans is low in some children with severe early childhood caries (SECC). AIM: To evaluate the effect of S. mutans level on dental microbiome and cariogenesis. METHODS: The oral microbiota was compared between caries-free group (CF) and SECC group.16S rRNA gene sequencing was used for S. mutans level bacterial community analysis. The candidate bacteria that were closely related with S. mutans abundance were identified and confirmed by absolute quantitative real-time PCR in clinical dental plaque samples from CF and SECC groups. RESULTS: Through in-depth analysis of dental plaque microorganism, Leptotrichia, Selenomonas and Prevotella_7 were found in the S. mutans-low group (p < 0.05) and Porphyromonas, Selenomonas_3 were found in the S. mutans-high group (p < 0.05). Through quantitative real-time PCR, Leptotrichia, Selenomonas and Prevotella_7 were identified as the potential biomarkers of SECC when S. mutans was at a low level. CONCLUSION: Leptotrichia, Selenomonas and Prevotella_7 are identified as potential biomarkers in SECC with a low abundance or without S. mutans. Our study may shed light on the understanding of caries occurrence in SECC with low abundance of S. mutans. ABBREVIATIONS: S. mutans, Streptococcus mutans; CF, caries-free; SECC, severe early childhood caries; ECC, early childhood caries; rRNA, ribosome RNA; qPCR, Quantitative real-time PCR; OTUs, operational taxonomic units; ANOVA, analysis of variance; LDA, Linear discriminant analysis; LEfSe, Linear discriminant analysis effect size; COG, Groups of proteins; NMDS, Non-MetricMulti-Dimensional Scaling; IL-1ß, interleukin -1ß; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10.

10.
Environ Int ; 158: 106981, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991245

RESUMEN

BACKGROUND: Emerging studies have investigated potential cardiovascular and respiratory health impacts from the use of personal-level intervention equipment against air pollution exposure. The objective of this systematic review is to assess the efficacy of personal-level air pollution intervention on mitigating adverse health effects from air pollution exposure by using portable air cleaner or wearing respirator. METHODS: In this systematic review, we searched PubMed and Web of Science for published literatures up to May 31, 2020, focusing on personal-level air pollution intervention studies. Among these studies, we investigated the impacts on cardio-respiratory responses to the use of these interventions. The intervention of review interest was the use of personal-level equipment against air pollution, including using portable air cleaner indoors or wearing respirator outdoors. The outcome of review interest was impacts on cardio-respiratory health endpoints following interventions, including level changes in blood pressure, heart rate variability (HRV), lung function, and biomarkers of inflammation and oxidative stress. Weighted mean differences or percent changes were pooled in meta-analyses for these health endpoints. The heterogeneity across studies was assessed using the Cochran's Q-statistic test, and the individual study quality was assessed using the Cochrane risk of bias tool version 2 (RoB 2). We further applied the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) method to evaluate the certainty of evidence. RESULTS: From systematic literature search and screening, we identified 29 related eligible intervention studies, including 21 studies on indoor portable air cleaner use and 8 studies on respirator use. For portable air cleaner intervention, we observed suggestive evidence of beneficial changes on cardio-respiratory health endpoints. Collectively in these studies, we found significantly beneficial changes of 2.01% decreases (95% CI: 0.50%, 3.52%) in systolic blood pressure, as well as non-significantly beneficial changes of 3.04% increases (95% CI: -2.65%, 8.74%) in reactive hyperemia index and 0.24% increases (95% CI: -0.82%, 1.31%) in forced expiratory volume in 1 s. We also observed non-significant reductions in levels of inflammation and oxidative stress biomarkers, including C-reactive protein, interleukin-6, fibrinogen, fractional exhaled nitric oxide and malondialdehyde. For respirator intervention, we observed some beneficial changes on cardiovascular health endpoints, such as significant increases in HRV parameters [SDNN (2.20%, 95% CI: 0.54%, 3.86%)], as well as non-significant decreases in blood pressure [SBP (0.63 mmHg, 95% CI: -0.39, 1.66)]; however, no sufficient data were available for meta-analyses on lung function and biomarkers. RoB 2 assessments suggested that most intervention studies were with a moderate to high overall risk of bias. The certainty of evidence for intervention outcome pairs was graded very low for either portable air cleaner or respirator intervention. The common reasons to downgrade study evidence included loss to follow-up, lack of blinding, lack of washout period, small sample size, and high heterogeneity across studies. CONCLUSIONS: The uses of indoor portable air cleaner and respirator could contribute to some beneficial changes on cardiovascular health, but with much limited evidence on respiratory health. Low certainty of the overall study evidence shed light on future research for larger sample size trials with more rigorous study design.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Biomarcadores , Prueba de Óxido Nítrico Exhalado Fraccionado , Ventiladores Mecánicos
11.
J Hazard Mater ; 424(Pt B): 127463, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34687998

RESUMEN

Traffic-related air pollution (TRAP) has shown enormous environmental toxicity, but its cardiorespiratory health impact on chronic obstructive pulmonary disease (COPD) has been less studied. We followed a panel of 45 COPD patients with 4 repeated clinical visits across 14 months in a traffic-predominated urban area of Beijing, China, with concurrent measurements of TRAP metrics (fine particulate matter, black carbon, oxides of nitrogen and carbon monoxide). Linear mixed-effect models were performed to evaluate the associations and potential pathways linking traffic pollution to indicators of spirometry, cardiac injury, inflammation and oxidative stress. We observed that interquartile range increases in moving averages of TRAP exposures at prior up to 7 days were associated with significant reductions in large and small airway functions, namely decreases in forced vital capacity of 3.1-9.3% and forced expiratory flow 25-75% of 5.9-16.4%. Higher TRAP levels were also associated with worsening of biomarkers relevant to lung injury (hepatocyte growth factor and surfactant protein D) and cardiac injury (high-sensitivity cardiac troponin I, B-type natriuretic peptide and soluble ST2), as well as enhanced airway/systemic inflammation and oxidative stress. Mediation analyses showed that TRAP exposures may prompt cardiac injury, possibly via worsening pulmonary pathophysiology. These findings highlight the importance of traffic pollution control priority in urban areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedad Pulmonar Obstructiva Crónica , Contaminación por Tráfico Vehicular , Anciano , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Material Particulado/análisis , Material Particulado/toxicidad , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
12.
Sci Total Environ ; 812: 151488, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742962

RESUMEN

Maternal exposure to fine particulate matter (PM2.5) has been associated with increased risk of preterm birth (PTB), but evidence on particles in smaller sizes and PTB risk remains limited. In this retrospective analysis, we included birth records of 24,001 singleton live births from Haidian Maternal and Child Health Hospital in Beijing, China, 2014-2017. Concurrently, number concentrations of size-fractioned particles in size ranges of 5-560 nm (PNC5-560) and mass concentrations of PM2.5, black carbon (BC) and gaseous pollutants were measured from a fixed-location monitoring station in central Haidian District. Logistic regression models were used to estimate the odds ratio (OR) of air pollutants on PTB risk after controlling for temperature, relative humidity, and individual covariates (e.g., maternal age, ethnicity, gravidity, parity, gestational weight gain, fetal gender, the year and season of conception). Positive matrix factorization models were then used to apportion the sources of PNC5-560. Among the 1062 (4.4%) PTBs, increased PTB risk was observed during the third trimester of pregnancy per 10 µg/m3 increase in PM2.5 [OR = 1.92; 95% Confidence Interval (95% CI): 1.76, 2.09], per 1000 particles/cm3 increase in PNC25-100 (OR = 1.09; 95% CI: 1.03, 1.15) and PNC100-560 (OR = 1.22; 95% CI: 1.05, 1.42). Among the identified sources of PNC5-560, emissions from gasoline and diesel vehicles were significantly associated with increased PTB risk, with ORs of 1.14 (95% CI: 1.01, 1.29) and 1.11 (95% CI: 1.04, 1.18), respectively. Exposures to other traffic-related air pollutants, such as BC and nitrogen dioxide (NO2) were also significantly associated with increased PTB risk. Our findings highlight the importance of traffic emission reduction in urban areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nacimiento Prematuro , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Beijing/epidemiología , Niño , China/epidemiología , Femenino , Humanos , Recién Nacido , Exposición Materna/efectos adversos , Material Particulado/efectos adversos , Material Particulado/análisis , Embarazo , Nacimiento Prematuro/inducido químicamente , Nacimiento Prematuro/epidemiología , Estudios Retrospectivos
13.
Thorax ; 77(4): 391-397, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34301742

RESUMEN

BACKGROUND: Ambient fine particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has been associated with deteriorated respiratory health, but evidence on particles in smaller sizes and childhood respiratory health has been limited. METHODS: We collected time-series data on daily respiratory emergency room visits (ERVs) among children under 14 years old in Beijing, China, during 2015-2017. Concurrently, size-fractioned number concentrations of particles in size ranges of 5-560 nm (PNC5-560) and mass concentrations of PM2.5, black carbon (BC) and nitrogen dioxide (NO2) were measured from a fixed-location monitoring station in the urban area of Beijing. Confounder-adjusted Poisson regression models were used to estimate excessive risks (ERs) of particle size fractions on childhood respiratory ERVs, and positive matrix factorisation models were applied to apportion the sources of PNC5-560. RESULTS: Among the 136 925 cases of all-respiratory ERVs, increased risks were associated with IQR increases in PNC25-100 (ER=5.4%, 95% CI 2.4% to 8.6%), PNC100-560 (4.9%, 95% CI 2.5% to 7.3%) and PM2.5 (1.3%, 95% CI 0.1% to 2.5%) at current and 1 prior days (lag0-1). Major sources of PNC5-560 were identified, including nucleation (36.5%), gasoline vehicle emissions (27.9%), diesel vehicle emissions (18.9%) and secondary aerosols (10.6%). Emissions from gasoline and diesel vehicles were found of significant associations with all-respiratory ERVs, with increased ERs of 6.0% (95% CI 2.5% to 9.7%) and 4.4% (95% CI 1.7% to 7.1%) at lag0-1 days, respectively. Exposures to other traffic-related pollutants (BC and NO2) were also associated with increased respiratory ERVs. CONCLUSION: Our findings suggest that exposures to higher levels of PNC5-560 from traffic emissions could be attributed to increased childhood respiratory morbidity, which supports traffic emission control priority in urban areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adolescente , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Niño , Servicio de Urgencia en Hospital , Monitoreo del Ambiente , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
14.
Int J Hyg Environ Health ; 239: 113878, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757311

RESUMEN

AIM: The precise pathophysiologic pathway linking traffic-related air pollution (TRAP) to diabetes mellitus is not well elucidated. We aimed to investigate whether activation of vascular inflammation can be a mechanistic linkage between ambient TRAP and insulin resistance. METHODS: Study outcomes were determined by assessing a series of circulating biomarkers indicative of insulin resistance and vascular inflammation among 73 healthy adults who underwent repeated clinical visits in Beijing, China, 2014-2016. Concomitantly, concentrations of ambient TRAP indices, including particulate matter in diameter <2.5 µm (PM2.5), particles in size fractions of 5-560 nm, black carbon, carbon monoxide, nitrogen dioxide, and oxides of nitrogen, were continuously monitored. RESULTS: Participants experienced extremely high levels of TRAP exposures, with mean (standard deviation) PM2.5 concentrations of 91.8 (48.3) µg/m3, throughout the study. We found that interquartile range increases in exposure to moving average concentrations of various TRAP indices at prior up to 7 days were associated with significant elevations of 8.9-49.6% in insulin levels. Higher pollutant levels were also related to worsening metrics of insulin resistance (soluble insulin receptor ectodomain, adipokines, and homeostasis model assessment of insulin resistance) and heightened vascular inflammatory responses, particularly disruptions of the receptor activator of nuclear factor κB ligand/osteoprotegerin system balance and elevations of monocyte/macrophage and T cell activation markers. Mediation analyses showed that activation of vascular inflammation could explain up to 66% of the alterations in metrics of insulin resistance attributable to air pollution. CONCLUSION: Our results suggest that ambient traffic pollution exposure was capable of promoting insulin resistance possibly via generating vascular inflammation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Resistencia a la Insulina , Contaminación por Tráfico Vehicular , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Inflamación , Material Particulado/análisis , Contaminación por Tráfico Vehicular/análisis
15.
Indoor Air ; 31(6): 1707-1721, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34374125

RESUMEN

Improving air quality in indoor environments where people live is of importance to protect human health. In this systematic review, we assessed the effectiveness of personal-level use of air filtration units in reducing indoor particulate matters (PM) concentrations under real-world situations following systematic review guidelines. A total of 54 articles were included in the review, in which 20 randomized controlled/crossover trials that reported the changes in indoor fine PM (PM2.5 ) concentrations were quantitatively assessed in meta-analysis. Standardized mean differences (SMDs) were calculated for changes in indoor PM concentrations following air filtration interventions. Moderate-to-large reductions of 11%-82% in indoor PM2.5  concentrations were observed with SMD of -1.19 (95% CI: -1.50, -0.88). The reductions in indoor PM concentrations varied by geographical locations, filtration technology employed, indoor environmental characteristics, and air pollution sources. Most studies were graded with low-to-moderate risk of bias; however, the overall certainty of evidence for indoor PM concentration reductions was graded at very low level. Considering the effectiveness of indoor air filtration under practical uses, socio-economic disparities across study populations, and costs of air filter replacement over time, our results highlight the importance of reducing air pollution exposure at the sources.


Asunto(s)
Filtros de Aire , Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Filtración , Humanos , Material Particulado/análisis
16.
Sensors (Basel) ; 21(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34450943

RESUMEN

With the increasing amounts of terminal equipment with higher requirements of communication quality in the emerging fifth generation mobile communication network (5G), the energy consumption of 5G base stations (BSs) is increasing significantly, which not only raises the operating expenses of telecom operators but also imposes a burden on the environment. To solve this problem, a two-step energy management method that coordinates 5G macro BSs for 5G networks with user clustering is proposed. The coordination among the communication equipment and the standard equipment in 5G macro BSs is developed to reduce both the energy consumption and the electricity costs. A novel user clustering method is proposed together with Benders decomposition to accelerate the solving process. Simulation results show that the proposed method is computationally efficient and can ensure near-optimal performance, effectively reducing the energy consumption and electricity costs compared with the conventional dispatching scheme.

17.
Environ Sci Pollut Res Int ; 28(23): 29445-29454, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33555475

RESUMEN

Little is known on the potential impact of temperature on respiratory morbidity, especially for children whose respiratory system can be more vulnerable to climate changes. In this time-series study, Poisson generalized additive models combined with distributed lag nonlinear models were used to assess the associations between ambient temperature and childhood respiratory morbidity. The impacts of extreme cold and hot temperatures were calculated as cumulative relative risks (cum.RRs) at the 1st and 99th temperature percentiles relative to the minimum morbidity temperature percentile. Attributable fractions of respiratory morbidity due to cold or heat were calculated for temperatures below or above the minimum morbidity temperature. Effect modifications by air pollution, age, and sex were assessed in stratified analyses. A total of 877,793 respiratory hospital visits of children under 14 years old between 2013 and 2017 were collected from Beijing Children's Hospital. Overall, we observed J-shaped associations with greater respiratory morbidity risks for exposure to lower temperatures, and higher fraction of all-cause respiratory hospital visits was caused by cold (33.1%) than by heat (0.9%). Relative to the minimum morbidity temperature (25 °C, except for rhinitis, which is 31 °C), the cum.RRs for extreme cold temperature (-6 °C) were 2.64 (95%CI: 1.51-4.61) for all-cause respiratory hospital visits, 2.73 (95%CI: 1.44-5.18) for upper respiratory infection, 2.76 (95%CI: 1.56-4.89) for bronchitis, 2.12 (95%CI: 1.30-3.47) for pneumonia, 2.06 (95%CI: 1.27-3.34) for rhinitis, and 4.02 (95%CI: 2.14-7.55) for asthma, whereas the associations between extreme hot temperature (29 °C) and respiratory hospital visits were not significant. The impacts of extreme cold temperature on asthma hospital visits were greater at higher levels of ozone (O3) exposure (> 50th percentile). Our findings suggest significantly increased childhood respiratory morbidity risks at extreme cold temperature, and the impact of extreme cold temperature on asthma hospital visits can be enhanced under higher level exposure to O3.


Asunto(s)
Contaminación del Aire , Adolescente , Beijing/epidemiología , Niño , China/epidemiología , Frío , Hospitales , Calor , Humanos , Temperatura
18.
Lab Chip ; 21(1): 75-82, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33284306

RESUMEN

Recent years have witnessed the development of droplet-based microfluidics as a useful and effective tool for high-throughput analysis in biological, chemical and environmental sciences. Despite the flourishing development of droplet manipulation techniques, only a few methods allow for label-free and quantitative inspection of flowing droplets in microchannels in real-time and in three dimensions (3-D). In this work, we propose and demonstrate the application of a real-time quantitative phase microscopy (RT-QPM) technique for 3-D visualization of droplets, and also for full-field and label-free measurement of analyte concentration distribution in the droplets. The phase imaging system consists of a linear-CCD-based holographic microscopy configuration and an optofluidic phase-shifting element, which can be used for retrieving quantitative phase maps of flowing objects in the microchannels with a temporal resolution only limited to the frame rate of the CCD camera. To demonstrate the capabilities of the proposed imaging technique, we have experimentally validated the 3-D image reconstruction of the droplets generated in squeezing and dripping regimes and quantitatively investigated the volumetric and morphological variation of droplets as well as droplet parameters related to the depth direction under different flow conditions. We also demonstrated the feasibility of using this technique, as a refractive index sensor, for in-line quantitative measurement of carbamide analyte concentration within the flowing droplets.

19.
ACS Appl Mater Interfaces ; 12(28): 31319-31326, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32432454

RESUMEN

Simultaneous attainments of high conductivity and superior catalysis are major challenges for amorphous electrocatalysts in carbon dioxide electroreduction at high overpotential. In this study, one protocol is first demonstrated to drive the shell amorphization of nanoporous Ag-Bi (a-NPSB) catalyst with the spatially interconnected ligament during the initial stage of CO2ER. This newborn a-NPSB bestows the outstanding catalysis, evidenced by a Faradaic efficiency of 88.4% for formate production at -1.15 V vs RHE, specific current density of 21.2 mA cm-2, and mass specific current density of 321 mA mg-1. The unique catalysis is considered as the collective contribution of the conductive ligament internally and amorphous Bi2O3 shell with about 3.2 nm thickness externally. Simultaneous obtaining of the conductivity of inner metals and catalytic activity of the amorphous shell will pave a new avenue for designing a robust electrode during electrochemical reaction.

20.
Nanomicro Lett ; 12(1): 140, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34138122

RESUMEN

Water electrolysis at high current density (1000 mA cm-2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm-2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA