Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
J Equine Sci ; 34(3): 67-72, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37781569

RESUMEN

Resveratrol (RSV; trans-3,5,4'-trihydroxystilbene) strongly activates sirtuin 1, and it and its analogue V29 enhance the proliferation of mesenchymal stem/stromal cells (MSCs).Although culture medium containing 5-azacytydine and RSV inhibits senescence of adipose tissue-derived MSCs isolated from horses with metabolic syndrome, few studies have reported the effects of RSV on equine bone marrow-derived MSCs (eBMMSCs) isolated from horses without metabolic syndrome. The aim of this study was to investigate the effects of RSV and V29 on the cell cycle of eBMMSCs. Following treatment with 5 µM RSV or 10 µM V29, the cell proliferation capacity of eBMMSCs derived from seven horses was evaluated by EdU (5-ethynyl-2'-deoxyuridine) and Ki-67 antibody assays. Brightfield images of cells and immunofluorescent images of EdU, Ki-67, and DAPI staining were recorded by fluorescence microscopy, and the number of cells positive for each was quantified and compared by Friedman's test at P<0.05. The growth fraction of eBMMSCs was significantly increased by RSV and V29 as measured by the EdU assay (control 28.1% ± 13.8%, V29 31.8% ± 14.6%, RSV 32.0% ± 10.8%; mean ± SD; P<0.05) but not as measured by the Ki-67 antibody assay (control 27.0% ± 11.2%, V29 27.4% ± 10.8%, RSV 27.7% ± 6.8%). RSV and V29 promoted progression of the cell cycle of eBMMSCs into the S phase and may be useful for eBMMSC expansion.

3.
Subcell Biochem ; 102: 175-193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36600134

RESUMEN

Cellular senescence is a permanent state of growth arrest coupled with profound changes in phenotype that can be triggered by multiple extrinsic or intrinsic stimuli. Senescence is a process-level example of the evolution of ageing mechanisms through antagonistic pleiotropy and plays a primary role in tumour suppression, although evidence is mounting for its involvement in other fundamental physiological processes. Evidence from human premature ageing diseases and from transgenic mice in which it is possible to specifically delete senescent cells is consistent with a model in which the accumulation of senescent cells through the life course is responsible for later life chronic disease and impairment. The removal of senescent cells or their reversion to a phenotypically benign state is thus an important emerging goal of translational medicine.Modern bioinformatic approaches based on text mining have compiled co-mentions of cell senescence and age-related diseases allowing an impartial ranking of the impairments most closely associated with this process. Following this schema, the evidence for the involvement of senescence in several highly ranked pathologies is reviewed, alongside potential methods for the ablation of senescent cells or their reversion to their primary phenotype with polyphenolics or inhibitors of p38 MAP kinase. Lastly, the potential for senescence to act as a barrier to the development of bioartificial organs designed to treat some of these conditions is discussed.


Asunto(s)
Envejecimiento , Senescencia Celular , Ratones , Animales , Humanos , Senescencia Celular/genética , Envejecimiento/genética
5.
Front Aging ; 2: 686382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35822046

RESUMEN

Cellular senescence, the irreversible growth arrest of cells from conditional renewal populations combined with a radical shift in their phenotype, is a hallmark of ageing in some mammalian species. In the light of this, interest in the detection of senescent cells in different tissues and different species is increasing. However much of the prior work in this area is heavily slanted towards studies conducted in humans and rodents; and in these species most studies concern primary fibroblasts or cancer cell lines rendered senescent through exposure to a variety of stressors. Complex techniques are now available for the detailed analysis of senescence in these systems. But, rather than focussing on these methods this review instead examines techniques for the simple and reproducible detection of senescent cells. Intended primary for the non-specialist who wishes to quickly detect senescent cells in tissues or species which may lack a significant evidence base on the phenomenon it emphasises the power of the original techniques used to demonstrate the senescence of cells, their interrelationship with other markers and their potential to inform on the senescent state in new species and archival specimens.

6.
Biogerontology ; 21(6): 817-826, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32793997

RESUMEN

Resveratrol alters the cytokinetics of mammalian cell populations in a dose dependent manner. Concentrations above 25-50 µM typically trigger growth arrest, senescence and/or apoptosis in multiple different cell types. In contrast, concentrations below 10 µM enhance the growth of log phase cell cultures and can rescue senescence in multiple strains of human fibroblasts. To better understand the structural features that regulate these effects, a panel of 24 structurally-related resveralogues were synthesised and evaluated for their capacity to activate SIRT1, as determined by an ex-vivo SIRT1 assay, their toxicity, as measured by lactate dehydrogenase release, and their effects on replicative senescence in MRC5 human fibroblasts as measured by their effects on Ki67 immunoreactivity and senescence-associated ß galactosidase activity. Minor modifications to the parent stilbene, resveratrol, significantly alter the biological activities of the molecules. Replacement of the 3,5-dihydroxy substituents with 3,5-dimethoxy groups significantly enhances SIRT1 activity, and reduces toxicity. Minimising other strong conjugative effects also reduces toxicity, but negatively impacts SIRT1 activation. At 100 µM many of the compounds, including resveratrol, induce senescence in primary MRC5 cells in culture. Modifications that reduce or remove this effect match those that reduce toxicity leading to a correlation between reduction in labelling index and increase in LDH release. At 10 µM, the majority of our compounds significantly enhance the growth fraction of log phase cultures of MRC5 cells, consistent with the rescue of a subpopulation of cells within the culture from senescence. SIRT1 activation is not required for rescue to occur but enhances the size of the effect.


Asunto(s)
Senescencia Celular , Fibroblastos/efectos de los fármacos , Resveratrol/farmacología , Sirtuina 1/metabolismo , Proliferación Celular , Células Cultivadas , Fibroblastos/citología , Humanos , Estilbenos
7.
Gerontology ; 66(3): 231-237, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31914446

RESUMEN

For much of the 20th century the ageing process was thought to be the result of the interplay of many different biological processes, each with relatively small effects on organismal lifespan. However, this model is no longer tenable. Rather it seems a few biological mechanisms, including nutrient sensing, telomere attrition and cellular senescence, mediate large effects on health and longevity. Biogerontology may have suffered from initial delusions of complexity. However, we argue that it is premature to assume either that the list of biological processes influencing lifespan is now comprehensive or that these mechanisms act independently of each other. A case in point is provided by recent work linking together changes in RNA splicing with advancing age and the ability of polyphenolics based on resveratrol to reverse replicative senescence. In this opinion piece, we propose a novel model in which the factors regulating splice restriction and those controlling cell senescence intersect across chronological and divisional time, giving rise to senescent and growing cells with more diverse properties than previously thought. We also consider therapeutic opportunities and potential problems in the light of this revised conceptual understanding of human cell senescence and ageing.


Asunto(s)
Envejecimiento/fisiología , Longevidad/fisiología , Senescencia Celular/fisiología , Humanos , Empalme del ARN
8.
FASEB J ; 33(1): 1086-1097, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30088951

RESUMEN

Cellular plasticity is a key facet of cellular homeostasis requiring correct temporal and spatial patterns of alternative splicing. Splicing factors, which orchestrate this process, demonstrate age-related dysregulation of expression; they are emerging as potential influences on aging and longevity. The upstream drivers of these alterations are still unclear but may involve aberrant cellular signaling. We compared the phosphorylation status of proteins in multiple signaling pathways in early and late passage human primary fibroblasts. We then assessed the impact of chemical inhibition or targeted knockdown of direct downstream targets of the ERK and AKT pathways on splicing factor expression, cellular senescence, and proliferation kinetics in senescent primary human fibroblasts. Components of the ERK and AKT signaling pathways demonstrated altered activation during cellular aging. Inhibition of AKT and ERK pathways led to up-regulation of splicing factor expression, reduction in senescent cell load, and partial reversal of multiple cellular senescence phenotypes in a dose-dependent manner. Furthermore, targeted knockdown of the genes encoding the downstream targets FOXO1 or ETV6 was sufficient to mimic these observations. Our results suggest that age-associated dysregulation of splicing factor expression and cellular senescence may derive in part from altered activity of ERK and AKT signaling and may act in part through the ETV6 and FOXO1 transcription factors. Targeting the activity of downstream effectors of ERK and AKT may therefore represent promising targets for future therapeutic intervention.-Latorre, E., Ostler, E. L., Faragher, R. G. A., Harries, L. W. FOXO1 and ETV6 genes may represent novel regulators of splicing factor expression in cellular senescence.


Asunto(s)
Senescencia Celular , Proteína Forkhead Box O1/genética , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Empalme de ARN/metabolismo , Proteínas Represoras/genética , Proliferación Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/enzimología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal , Proteína ETS de Variante de Translocación 6
9.
Genes Chromosomes Cancer ; 58(6): 341-356, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30474255

RESUMEN

Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease-Hutchinson-Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long-term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT-immortalized cell lines.


Asunto(s)
Cariotipo Anormal , Inestabilidad Genómica , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Progeria/genética , Telomerasa/genética , Homeostasis del Telómero , Línea Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Telomerasa/metabolismo
10.
Biogerontology ; 19(6): 447-459, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30054761

RESUMEN

Cellular senescence is now considered as a major mechanism in the development and progression of various diseases and this may include metabolic diseases such as obesity and type-2 diabetes. The presence of obesity and diabetes is a major risk factor in the development of additional health conditions, such as cardiovascular disease, kidney disease and cancer. Since senescent cells can drive disease development, obesity and diabetes can potentially create an environment that accelerates cell senescence within other tissues of the body. This can consequently manifest as age-related biological impairments and secondary diseases. Cell senescence in cell types linked with obesity and diabetes, namely adipocytes and pancreatic beta cells will be explored, followed by a discussion on the role of obesity and diabetes in accelerating ageing through induction of premature cell senescence mediated by high glucose levels and oxidised low-density lipoproteins. Particular emphasis will be placed on accelerated cell senescence in endothelial progenitor cells, endothelial cells and vascular smooth muscle cells with relation to cardiovascular disease and proximal tubular cells with relation to kidney disease. A summary of the potential strategies for therapeutically targeting senescent cells for improving health is also presented.


Asunto(s)
Adipocitos/patología , Envejecimiento , Senescencia Celular , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/patología , Obesidad/patología , Animales , Enfermedades Cardiovasculares/etiología , Modelos Animales de Enfermedad , Glucosa/metabolismo , Humanos , Enfermedades Renales/etiología , Lipoproteínas LDL/metabolismo , Ratones , Terapia Molecular Dirigida , Neoplasias/etiología
11.
BMC Cell Biol ; 18(1): 31, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29041897

RESUMEN

BACKGROUND: Altered expression of mRNA splicing factors occurs with ageing in vivo and is thought to be an ageing mechanism. The accumulation of senescent cells also occurs in vivo with advancing age and causes much degenerative age-related pathology. However, the relationship between these two processes is opaque. Accordingly we developed a novel panel of small molecules based on resveratrol, previously suggested to alter mRNA splicing, to determine whether altered splicing factor expression had potential to influence features of replicative senescence. RESULTS: Treatment with resveralogues was associated with altered splicing factor expression and rescue of multiple features of senescence. This rescue was independent of cell cycle traverse and also independent of SIRT1, SASP modulation or senolysis. Under growth permissive conditions, cells demonstrating restored splicing factor expression also demonstrated increased telomere length, re-entered cell cycle and resumed proliferation. These phenomena were also influenced by ERK antagonists and agonists. CONCLUSIONS: This is the first demonstration that moderation of splicing factor levels is associated with reversal of cellular senescence in human primary fibroblasts. Small molecule modulators of such targets may therefore represent promising novel anti-degenerative therapies.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Factores de Empalme de ARN/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Estilbenos/farmacología , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos , Humanos , Factores de Empalme de ARN/metabolismo , Resveratrol , Estilbenos/química
12.
Exp Gerontol ; 83: 139-47, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27492502

RESUMEN

Werner's syndrome (WS) is an autosomal recessive genetic disorder caused by loss of function mutation in wrn and is a useful model of premature in vivo ageing. Cellular senescence is a plausible causal mechanism of mammalian ageing and, at the cellular level, WS fibroblasts show premature senescence resulting from a combination of telomeric attrition and replication fork stalling. Over 90% of WS fibroblast cultures achieve <20 population doublings (PD) in vitro compared to wild type human fibroblast cultures. It has been proposed that some cell types, capable of proliferation, will fail to show a premature senescence phenotype in response to wrn mutations. To test this hypothesis, human dermal keratinocytes (derived from both WS and wild type patients) were cultured long term. WS Keratinocytes showed a replicative lifespan in excess of 100 population doublings but maintained functional growth arrest mechanisms based on p16 and p53. The karyotype of the cells was superficially normal and the cultures retained markers characteristic of keratinocyte holoclones (stem cells) including p63 expression and telomerase activity. Accordingly we conclude that, in contrast to WS fibroblasts, WS keratinocytes do not demonstrate slow growth rates or features of premature senescence. These findings suggest that the epidermis is among the tissue types that do not display symptoms of premature ageing caused by loss of function of wrn. This is in support that Werner's syndrome is a segmental progeroid syndrome.


Asunto(s)
Senescencia Celular , Queratinocitos/citología , Helicasa del Síndrome de Werner/genética , Síndrome de Werner/genética , Biomarcadores/análisis , Células Cultivadas , Replicación del ADN , Fibroblastos/metabolismo , Humanos , Fenotipo , Telomerasa
13.
J Gerontol A Biol Sci Med Sci ; 71(4): 435-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26419976

RESUMEN

Although the demographic revolution has produced hundreds of millions people aged 65 and older, a substantial segment of that population is not enjoying the benefits of extended healthspan. Many live with multiple chronic conditions and disabilities that erode the quality of life. The consequences are also costly for society. In the United States, the most costly 5% of Medicare beneficiaries account for approximately 50% of Medicare's expenditures. This perspective summarizes a recent workshop on biomedical approaches to best extend healthspan as way to reduce age-related dysfunction and disability. We further specify the action items necessary to unite health professionals, scientists, and the society to partner around the exciting and palpable opportunities to extend healthspan.


Asunto(s)
Envejecimiento/fisiología , Demografía , Geriatría/tendencias , Anciano , Envejecimiento/patología , Femenino , Promoción de la Salud , Necesidades y Demandas de Servicios de Salud , Servicios de Salud para Ancianos , Humanos , Esperanza de Vida , Longevidad , Masculino , Calidad de Vida , Investigación Biomédica Traslacional
14.
Biogerontology ; 17(2): 305-15, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26400758

RESUMEN

Senescent cells show an altered secretome profile termed the senescence-associated secretory phenotype (SASP). There is an increasing body of evidence that suggests that the accumulation of SASP-positive senescent cells in humans is partially causal in the observed shift to a low-level pro-inflammatory state in aged individuals. This in turn suggests the SASP as a possible therapeutic target to ameliorate inflammatory conditions in the elderly, and thus a better understanding of the signalling pathways underlying the SASP are required. Prior studies using the early generation p38 MAPK inhibitor SB203580 indicated that p38 signalling was required for the SASP. In this study, we extend these observations using two next-generation p38 inhibitors (UR-13756 and BIRB 796) that have markedly improved selectivity and specificity compared to SB203580, to strengthen the evidence that the SASP is p38-dependent in human fibroblasts. BIRB 796 has an efficacy and toxicity profile that has allowed it to reach Phase III clinical trials, suggesting its possible use to suppress the SASP in vivo. We also demonstrate for the first time a requirement for signalling through the p38 downstream MK2 kinase in the regulation of the SASP using two MK2 inhibitors. Finally, we demonstrate that a commercially-available multiplex cytokine assay technology can be used to detect SASP components in the conditioned medium of cultured fibroblasts from both young and elderly donors. This assay is a high-throughput, multiplex microtitre-based assay system that is highly sensitive, with very low sample requirements, allowing it to be used for low-volume human biological fluids. Our initial studies using existing multiplex plates form the basis for a "SASP signature" assay that could be used as a high-throughput system in a clinical study setting. Our findings therefore provide important steps towards the study of, and intervention in, the SASP in human ageing and age-related disease.


Asunto(s)
Senescencia Celular , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos
15.
Front Genet ; 6: 171, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236330

RESUMEN

The aging of the population represents one of the largest healthcare challenges facing the world today. The available scientific evidence shows that interventions are available now that can target fundamental "aging" processes or pathways. Sufficient economic evidence is available to argue convincingly that this approach will also save enormous sums of money which could then be deployed to solve other urgent global problems. However, as yet this scenario has barely entered the public consciousness and, far from being a point of vigorous debate, seems to be ignored by policy makers. Understanding why this lethargy exists is important given the urgent need to deal with the challenge represented by population aging. In this paper I hypothesize that one major cause of inaction is a widely held, but flawed, conceptual framework concerning the relationship between aging and disease that categorizes the former as "natural" and the latter as "abnormal." This perspective is sufficient in itself to act as a disincentive to intervention by rendering those who hold it prone to the "naturalistic fallacy" but can give rise to active hostility to biogerontology if coupled with loose and/or blurred understanding of the goals and potential of the field.

16.
Chem Cent J ; 9: 26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26023318

RESUMEN

BACKGROUND: Compounds based on trans-1,2-diphenylethene are the subject of intense interest both for their optical properties and as potential leads for drug discovery, as a consequence of their anticancer, anti-inflammatory and antioxidant properties. Perhaps the best known of these is trans-3,5,4'-trihydroxystilbene (resveratrol), that has been identified as a promising lead in the search for anti-ageing therapeutics. RESULTS: We report here a new, convenient, one-pot stereo-selective synthesis of resveratrol and other trans-stilbene derivatives. A wide range of known and novel "Resveralogues" were synthesised by using this simple protocol, including examples with electron donating and electron withdrawing substituents, in uniformly high yield. The structures of all compounds were confirmed by standard methods including (1)H and (13)C NMR, IR and High Resolution Mass spectroscopy. CONCLUSIONS: We have established a simple and convenient protocol for resveralogue synthesis. It is readily scalable, and sufficiently robust and simple for ready use in automated synthesis or for library development of resveralogues. This supersedes previously reported synthetic methods that required inert conditions, extensive purification and/or costly reagents. Graphical abstractOne-pot preparation of diverse Resveralogues - high yields of product with minimal purification.

17.
Biogerontology ; 13(1): 49-62, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21786128

RESUMEN

WRN is a RecQ helicase with an associated exonuclease activity important in DNA metabolism, including DNA replication, repair and recombination. In humans, deficiencies in WRN function cause the segmental progeroid Werner syndrome (WS), in which patients show premature onset of many hallmarks of normal human ageing. At the cellular level, WRN loss results in rapid replicative senescence, chromosomal instability and sensitivity to various DNA damaging agents including the topoisomerase inhibitor, camptothecin (CPT). Here, we investigate the potential of using either transient or stable WRN knockdown as a means of sensitising cells to CPT. We show that targeting WRN mRNA for degradation by either RNAi or hammerhead ribozyme catalysis renders human fibroblasts as sensitive to CPT as fibroblasts derived from WS patients, and furthermore, we find altered cell cycle transit and nucleolar destabilisation in these cells following CPT treatment. Such WS-like phenotypes are observed despite very limited decreases in total WRN protein, suggesting that levels of WRN protein are rate-limiting for the cellular response to camptothecin. These findings have major implications for development of anti-WRN agents that may be useful in sensitising tumour cells to clinically relevant topoisomerase inhibitors.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Camptotecina/uso terapéutico , Exodesoxirribonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , RecQ Helicasas/metabolismo , Síndrome de Werner/tratamiento farmacológico , Secuencia de Bases , Línea Celular , Ensayo Cometa , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Helicasa del Síndrome de Werner
18.
Aging Cell ; 11(2): 234-40, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22128747

RESUMEN

The human cornea is a tri-laminar structure composed of several cell types with substantial mitotic potential. Age-related changes in the cornea are associated with declining visual acuity and the onset of overt age-related corneal diseases. Corneal transplantation is commonly used to restore vision in patients with damaged or diseased corneas. However, the supply of donor tissue is limited, and thus there is considerable interest in the development of tissue-engineered alternatives. A major obstacle to these approaches is the short replicative lifespan of primary human corneal endothelial cells (HCEC). Accordingly, a comprehensive investigation of the signalling pathways and mechanisms underpinning proliferative lifespan and senescence in HCEC was undertaken. The effects of exogenous human telomerase reverse transcriptase expression, p53 knockdown, disruption of the pRb pathway by over-expression of CDK4 and reduced oxygen concentration on the lifespan of primary HCEC were evaluated. We provide proof-of-principle that forced expression of telomerase, when combined with either p53 knockdown or CDK4 over-expression, is sufficient to produce immortalized HCEC lines. The resultant cell lines express an HCEC-specific transcriptional fingerprint, and retain expression of the corneal endothelial temperature-sensitive potassium channel, suggesting that significant dedifferentiation does not occur as a result of these modes of immortalization. Exploiting these insights into proliferative lifespan barriers in HCEC will underpin the development of novel strategies for cell-based therapies in the human cornea.


Asunto(s)
Senescencia Celular , Células Endoteliales/metabolismo , Endotelio Corneal/metabolismo , Células Cultivadas , Quinasa 4 Dependiente de la Ciclina/metabolismo , Humanos , Estrés Oxidativo , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismo
19.
Age (Dordr) ; 33(4): 555-64, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21318333

RESUMEN

Resveratrol, trans-3,5,4'-trihydroxystilbene, is a polyphenolic compound which has been reported to mimic the gene expression patterns seen in whole animals undergoing dietary restriction. The mechanism of action of resveratrol remains poorly understood, but modulation of both cellular proliferation and apoptosis has been proposed as important routes by which the molecule may exert its effects. This study reports the effects of both resveratrol and dihydroresveratrol (a primary in vivo metabolite) on the proliferative capacity of human primary fibroblasts. No generalised reduction in the growth fraction was observed when fibroblasts derived from three different tissues were treated with resveratrol at concentrations of 10 µm or less. However, concentrations above 25 µm produced a dose-dependent reduction in proliferation. This loss of the growth fraction was paralleled by an increase in the senescent fraction as determined by staining for senescence associated beta galactosidase and dose recovery studies conducted over a 7-day period. Entry into senescence in response to treatment with resveratrol could be blocked by a 30-min preincubation with the p38 MAP kinase inhibitor SB203580. No effects on proliferation were observed when cells were treated with dihydroresveratrol at concentrations of up to 100 µm.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Estilbenos/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/farmacología , Antígeno Ki-67/análisis , Piridinas/farmacología , Resveratrol , beta-Galactosidasa , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
20.
Expert Rev Mol Med ; 11: e27, 2009 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19732491

RESUMEN

Ageing is a progressive failure of defence and repair processes that produces physiological frailty (the loss of organ reserve with age), loss of homeostasis and eventual death. Over the past ten years exceptional progress has been made in understanding both why the ageing process happens and the mechanisms that are responsible for it. The study of natural mutants that accelerate some, but not all, of the features of the human ageing process has now progressed to a degree that drug trials are either taking place or can be envisaged. Simultaneously, a series of mutations have been identified in different species that confer extended healthy life, indicating that the ageing process is much more malleable than might have been expected and that single interventions have the potential to delay the onset of multiple age-associated conditions. Data generated using these organisms have led to the formulation of a powerful new hypothesis, the 'green theory' of ageing. This proposes that a finite capacity to carry out broad-spectrum detoxification and recycling is the primary mechanistic limit on organismal lifespan. This is turn suggests important new experimental approaches and potential interventions designed to increase healthy lifespan.


Asunto(s)
Envejecimiento/fisiología , Senescencia Celular/fisiología , Insulina/metabolismo , Estrés Oxidativo/fisiología , Somatomedinas/metabolismo , Envejecimiento/genética , Animales , Evolución Biológica , Humanos , Longevidad/genética , Longevidad/fisiología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA