Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 325(5): H1126-H1132, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37682239

RESUMEN

Cardiotoxicity is the most worrying cardiovascular alteration in patients treated with chemotherapy. To improve the understanding regarding the cardiotoxicity, we studied whether 1) patients with cardiac dysfunction related to anthracycline-based chemotherapy have augmented sympathetic nerve activity and decreased exercise capacity and 2) these responses are similar to those observed in patients with heart failure caused by other etiologies. Sixteen patients with heart failure with reduced ejection fraction related to anthracycline-based chemotherapy with or without chest radiation (HFrEFCA), 10 patients with heart failure with reduced ejection not related to cancer therapy (HFrEF), and 16 age- and body mass index (BMI)-matched healthy control subjects were studied. Left ventricular ejection fraction (LVEF, echocardiography), peak oxygen consumption (peak V̇o2, cardiopulmonary exercise test), muscle sympathetic nerve activity (MSNA, microneurography), and forearm blood flow (FBF, venous occlusion plethysmography) were measured. We found that peak oxygen consumption peak V̇o2 and LVEF were significantly reduced in patients with HFrEFCA compared with that of control subjects (P < 0.0001) but similar to those found in patients with HFrEFCA. The sympathetic nerve activity burst frequency and incidence were significantly higher in patients with HFrEFCA than that in control subjects (P < 0.0001). No differences were found between patients with HFrEF and HFrEFCA. Peak V̇o2 was inversely associated with MSNA burst frequency (r = -0.53, P = 0.002) and burst incidence (r = -0.38, P = 0.01) and directly associated with LVEF (r = 0.71, P < 0.0001). Taken together, we conclude that patients who develop heart failure due to anthracycline-based chemotherapy have sympathetic neural overdrive and reduced exercise capacity. In addition, these physiological changes are similar to those observed in patients with HFrEF.NEW & NOTEWORTHY Patients with heart failure with reduced ejection fraction related to anthracycline-based chemotherapy have increased sympathetic nerve activity and decreased exercise capacity. These alterations in autonomic control and physical capacity are similar to those observed in patients with heart failure due to other etiologies. These findings highlight the importance of special care of oncological patients treated with chemotherapy.

2.
Am J Physiol Regul Integr Comp Physiol ; 325(3): R269-R279, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37449870

RESUMEN

Previous studies show that COVID-19 survivors have elevated muscle sympathetic nerve activity (MSNA), endothelial dysfunction, and aortic stiffening. However, the neurovascular responses to mental stress and exercise are still unexplored. We hypothesized that COVID-19 survivors, compared with age- and body mass index (BMI)-matched control subjects, exhibit abnormal neurovascular responses to mental stress and physical exercise. Fifteen severe COVID-19 survivors (aged: 49 ± 2 yr, BMI: 30 ± 1 kg/m2) and 15 well-matched control subjects (aged: 46 ± 3 yr, BMI: 29 ± 1 kg/m2) were studied. MSNA (microneurography), forearm blood flow (FBF), and forearm vascular conductance (FVC, venous occlusion plethysmography), mean arterial pressure (MAP, Finometer), and heart rate (HR, ECG) were measured during a 3-min mental stress (Stroop Color-Word Test) and during a 3-min isometric handgrip exercise (30% of maximal voluntary contraction). During mental stress, MSNA (frequency and incidence) responses were higher in COVID-19 survivors than in controls (P < 0.001), and FBF and FVC responses were attenuated (P < 0.05). MAP was similar between the groups (P > 0.05). In contrast, the MSNA (frequency and incidence) and FBF and FVC responses to handgrip exercise were similar between the groups (P > 0.05). MAP was lower in COVID-19 survivors (P < 0.05). COVID-19 survivors exhibit an exaggerated MSNA and blunted vasodilatory response to mental challenge compared with healthy adults. However, the neurovascular response to handgrip exercise is preserved in COVID-19 survivors. Overall, the abnormal neurovascular control in response to mental stress suggests that COVID-19 survivors may have an increased risk to cardiovascular events during mental challenge.


Asunto(s)
COVID-19 , Fuerza de la Mano , Adulto , Humanos , Persona de Mediana Edad , Presión Sanguínea/fisiología , Hemodinámica , Ejercicio Físico/fisiología , Frecuencia Cardíaca/fisiología , Sistema Nervioso Simpático , Antebrazo/irrigación sanguínea , Músculo Esquelético/inervación
3.
Hypertension ; 80(2): 470-481, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36416143

RESUMEN

BACKGROUND: COVID-19 has become a dramatic health problem during this century. In addition to high mortality rate, COVID-19 survivors are at increased risk for cardiovascular diseases 1-year after infection. Explanations for these manifestations are still unclear but can involve a constellation of biological alterations. We hypothesized that COVID-19 survivors compared with controls exhibit sympathetic overdrive, vascular dysfunction, cardiac morpho-functional changes, impaired exercise capacity, and increased oxidative stress. METHODS: Nineteen severe COVID-19 survivors and 19 well-matched controls completed the study. Muscle sympathetic nerve activity (microneurography), brachial artery flow-mediated dilation and blood flow (Doppler-Ultrasound), carotid-femoral pulse wave velocity (Complior), cardiac morpho-functional parameters (echocardiography), peak oxygen uptake (cardiopulmonary exercise testing), and oxidative stress were measured ~3 months after hospital discharge. Complementary experiments were conducted on human umbilical vein endothelial cells cultured with plasma samples from subjects. RESULTS: Muscle sympathetic nerve activity and carotid-femoral pulse wave velocity were greater and brachial artery flow-mediated dilation, brachial artery blood flow, E/e' ratio, and peak oxygen uptake were lower in COVID-19 survivors than in controls. COVID-19 survivors had lower circulating antioxidant markers compared with controls, but there were no differences in plasma-treated human umbilical vein endothelial cells nitric oxide production and reactive oxygen species bioactivity. Diminished peak oxygen uptake was associated with sympathetic overdrive, vascular dysfunction, and reduced diastolic function in COVID-19 survivors. CONCLUSIONS: Our study revealed that COVID-19 survivors have sympathetic overactivation, vascular dysfunction, cardiac morpho-functional changes, and reduced exercise capacity. These findings indicate the need for further investigation to determine whether these manifestations are persistent longer-term and their impact on the cardiovascular health of COVID-19 survivors.


Asunto(s)
COVID-19 , Enfermedades Vasculares , Rigidez Vascular , Humanos , Endotelio Vascular , Análisis de la Onda del Pulso , Tolerancia al Ejercicio , Células Endoteliales , Arteria Braquial , Oxígeno , Rigidez Vascular/fisiología
4.
Front Physiol ; 13: 812942, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283771

RESUMEN

Aims: Both postprandial lipemia (PPL) and disturbed blood flow (DBF) induce endothelial dysfunction. However, the interactive effect of these stimuli on endothelial function is currently unknown. In the present study, we tested whether PPL plus DBF causes a greater reduction in flow-mediated dilation (FMD) than PPL and if this response is associated with elevations in oxidative stress and endothelial microvesicles (EMVs). Methods: Eighteen individuals (aged 28 ± 1yrs, 3 females, and BMI 24.43 ± 0.8kg/m2) randomly underwent two experimental sessions: PPL and PPL plus DBF. FMD and venous blood samples were obtained at baseline and 30, 70, and 110 min after stimulation. PPL was induced by fat overload via mozzarella pizza ingestion and DBF by forearm cuff inflation to 75 mm Hg per 30 min. Lipidic profile, oxidative stress (thiobarbituric acid reactive substances, TBARS; ferric reducing/antioxidant power, FRAP; hydrogen peroxide, H2O2) and EMVs were measured in blood samples. Results: Hypertriglyceridemia was observed in both sessions. Retrograde shear rate and oscillatory index responses were significantly higher in the PPL plus DBF compared with PPL. PPL plus DBF evoked a greater reduction in FMD than did PPL and EMVs, NADPH oxidase, and H2O2 similarly increased in both sessions, but TBARS and FRAP did not change. Conclusion: These data indicate that the association of PPL plus DBF additively impairs endothelium-dependent function in 110 min after stimulus in healthy individuals, despite a similar increase in oxidative stress and EMVs. Further studies are needed to understand the mechanisms associated with the induced-endothelial dysfunction by association of PPL and DBF.

5.
Front Robot AI ; 8: 714023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660702

RESUMEN

Human-object interaction is of great relevance for robots to operate in human environments. However, state-of-the-art robotic hands are far from replicating humans skills. It is, therefore, essential to study how humans use their hands to develop similar robotic capabilities. This article presents a deep dive into hand-object interaction and human demonstrations, highlighting the main challenges in this research area and suggesting desirable future developments. To this extent, the article presents a general definition of the hand-object interaction problem together with a concise review for each of the main subproblems involved, namely: sensing, perception, and learning. Furthermore, the article discusses the interplay between these subproblems and describes how their interaction in learning from demonstration contributes to the success of robot manipulation. In this way, the article provides a broad overview of the interdisciplinary approaches necessary for a robotic system to learn new manipulation skills by observing human behavior in the real world.

6.
Front Physiol ; 12: 629674, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776792

RESUMEN

INTRODUCTION: Disturbed blood flow, characterized by high retrograde and oscillatory shear rate (SR), is associated with a proatherogenic phenotype. The impact of disturbed blood flow in patients with heart failure with reduced ejection fraction (HFrEF) remains unknown. We tested the hypothesis that acute elevation to retrograde and oscillatory SR provoked by local circulatory occlusion would increase endothelial microparticles (EMPs) and decrease brachial artery flow-mediated dilation (FMD) in patients with HFrEF. METHODS: Eighteen patients with HFrEF aged 55 ± 2 years, with left ventricular ejection fraction (LVEF) 26 ± 1%, and 14 control subjects aged 49 ± 2 years with LVEF 65 ± 1 randomly underwent experimental and control sessions. Brachial artery FMD (Doppler) was evaluated before and after 30 min of disturbed forearm blood flow provoked by pneumatic cuff (Hokanson) inflation to 75 mm Hg. Venous blood samples were collected at rest, after 15 and 30 min of disturbed blood flow to assess circulating EMP levels (CD42b-/CD31+; flow cytometry). RESULTS: At rest, FMD was lower in patients with HFrEF compared with control subjects (P < 0.001), but blood flow patterns and EMPs had no differences (P > 0.05). The cuff inflation provoked a greater retrograde SR both groups (P < 0.0001). EMPs responses to disturbed blood flow significantly increased in patients with HFrEF (P = 0.03). No changes in EMPs were found in control subjects (P > 0.05). Disturbed blood flow decreased FMD both groups. No changes occurred in control condition. CONCLUSION: Collectively, our findings suggest that disturbed blood flow acutely decreases FMD and increases EMP levels in patients with HFrEF, which may indicate that this set of patients are vulnerable to blood flow disturbances.

7.
J Neural Eng ; 18(2)2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33418548

RESUMEN

Objective.The novelty of this study consists of the exploration of multiple new approaches of data pre-processing of brainwave signals, wherein statistical features are extracted and then formatted as visual images based on the order in which dimensionality reduction algorithms select them. This data is then treated as visual input for 2D and 3D convolutional neural networks (CNNs) which then further extract 'features of features'.Approach.Statistical features derived from three electroencephalography (EEG) datasets are presented in visual space and processed in 2D and 3D space as pixels and voxels respectively. Three datasets are benchmarked, mental attention states and emotional valences from the four TP9, AF7, AF8 and TP10 10-20 electrodes and an eye state data from 64 electrodes. Seven hundred twenty-nine features are selected through three methods of selection in order to form 27 × 27 images and 9 × 9 × 9 cubes from the same datasets. CNNs engineered for the 2D and 3D preprocessing representations learn to convolve useful graphical features from the data.Main results.A 70/30 split method shows that the strongest methods for classification accuracy of feature selection are One Rule for attention state and Relative Entropy for emotional state both in 2D. In the eye state dataset 3D space is best, selected by Symmetrical Uncertainty. Finally, 10-fold cross validation is used to train best topologies. Final best 10-fold results are 97.03% for attention state (2D CNN), 98.4% for Emotional State (3D CNN), and 97.96% for Eye State (3D CNN).Significance.The findings of the framework presented by this work show that CNNs can successfully convolve useful features from a set of pre-computed statistical temporal features from raw EEG waves. The high performance of K-fold validated algorithms argue that the features learnt by the CNNs hold useful knowledge for classification in addition to the pre-computed features.


Asunto(s)
Electroencefalografía , Redes Neurales de la Computación , Algoritmos , Electroencefalografía/métodos , Emociones , Proyectos de Investigación
8.
PLoS One ; 15(10): e0241332, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33112931

RESUMEN

In this work we present a three-stage Machine Learning strategy to country-level risk classification based on countries that are reporting COVID-19 information. A K% binning discretisation (K = 25) is used to create four risk groups of countries based on the risk of transmission (coronavirus cases per million population), risk of mortality (coronavirus deaths per million population), and risk of inability to test (coronavirus tests per million population). The four risk groups produced by K% binning are labelled as 'low', 'medium-low', 'medium-high', and 'high'. Coronavirus-related data are then removed and the attributes for prediction of the three types of risk are given as the geopolitical and demographic data describing each country. Thus, the calculation of class label is based on coronavirus data but the input attributes are country-level information regardless of coronavirus data. The three four-class classification problems are then explored and benchmarked through leave-one-country-out cross validation to find the strongest model, producing a Stack of Gradient Boosting and Decision Tree algorithms for risk of transmission, a Stack of Support Vector Machine and Extra Trees for risk of mortality, and a Gradient Boosting algorithm for the risk of inability to test. It is noted that high risk for inability to test is often coupled with low risks for transmission and mortality, therefore the risk of inability to test should be interpreted first, before consideration is given to the predicted transmission and mortality risks. Finally, the approach is applied to more recent risk levels to data from September 2020 and weaker results are noted due to the growth of international collaboration detracting useful knowledge from country-level attributes which suggests that similar machine learning approaches are more useful prior to situations later unfolding.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Planificación en Desastres , Aprendizaje Automático , Modelos Teóricos , Pandemias , Neumonía Viral/epidemiología , Medición de Riesgo/métodos , Algoritmos , COVID-19 , Prueba de COVID-19 , Clasificación , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/transmisión , Árboles de Decisión , Predicción , Salud Global , Humanos , Cooperación Internacional , Neumonía Viral/diagnóstico , Neumonía Viral/mortalidad , Neumonía Viral/transmisión , Juego de Reactivos para Diagnóstico/provisión & distribución , SARS-CoV-2 , Máquina de Vectores de Soporte
9.
Sensors (Basel) ; 20(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917024

RESUMEN

In this work, we show that a late fusion approach to multimodality in sign language recognition improves the overall ability of the model in comparison to the singular approaches of image classification (88.14%) and Leap Motion data classification (72.73%). With a large synchronous dataset of 18 BSL gestures collected from multiple subjects, two deep neural networks are benchmarked and compared to derive a best topology for each. The Vision model is implemented by a Convolutional Neural Network and optimised Artificial Neural Network, and the Leap Motion model is implemented by an evolutionary search of Artificial Neural Network topology. Next, the two best networks are fused for synchronised processing, which results in a better overall result (94.44%) as complementary features are learnt in addition to the original task. The hypothesis is further supported by application of the three models to a set of completely unseen data where a multimodality approach achieves the best results relative to the single sensor method. When transfer learning with the weights trained via British Sign Language, all three models outperform standard random weight distribution when classifying American Sign Language (ASL), and the best model overall for ASL classification was the transfer learning multimodality approach, which scored 82.55% accuracy.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Lengua de Signos , Computadores , Humanos , Movimiento , Reino Unido , Estados Unidos
10.
Saúde Redes ; 4(3): 143-152, jul. - set. 2018.
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1015746

RESUMEN

Introdução: As neoplasias de pele têm crescido em todo o mundo, porém, cerca de 50% dos casos podem ser prevenidos. Os trabalhadores rurais apresentam grande risco de desenvolver o câncer de pele, pois passam longos períodos expostos às radiações solares. Objetivo: Elaborar um material educativo de abordagem ao câncer de pele. Método: Estudo relato de experiência descritivo. Relato da Experiência: Para elaboração do material educativo foi realizada uma revisão sobre o tema na literatura cientifica e ao documento elaborado pelo Consenso Brasileiro de Fotoproteção, produzido pela Sociedade Brasileira de Dermatologia. Foi elaborado um folheto intitulado "Câncer de Pele: Plantando Proteção, Colhendo Saúde", priorizando os seguintes aspectos: a) Informações básicas sobre o câncer de pele; b) Tabela para identificação das lesões de pele cancerígenas; c) Equipamentos de Proteção Individual para proteção dos raios solares; d) Forma correta do uso do protetor solar em cada parte do corpo. Este tem intuito de auxiliar os profissionais da área da saúde a orientar o público rural quanto ao câncer de pele. Conclusões: O folheto é um instrumento de fácil manipulação e distribuição e se apresenta como uma importante ferramenta para a prevenção de doenças, como o câncer de pele, nas atividades de educação em saúde individual ou coletiva. (AU)


Introduction: Skin neoplasms have been growing all over the world, but about 50% of cases can be prevented. Rural workers are at great risk of developing skin cancer because they spend long periods exposed to solar radiation. Objective: To prepare an educational material to approach skin cancer. Experience Report: For the preparation of the educational material, a review was made on the subject in the scientific literature and the document prepared by the Brazilian Consensus on Photoprotection, produced by the Brazilian Society of Dermatology. A leaflet entitled "Skin Cancer: Planting Protection, Reaping Health" was developed, prioritizing the following aspects: a) Basic information about skin cancer; b) Table for identification of cancerous skin lesions; c) Individual Protection Equipment to protect the solar rays; d) Correct way to use sunscreen in every part of the body. It aims to help health professionals to guide the rural public about skin cancer. Conclusions: The leaflet is an instrument of easy manipulation and distribution and presents itself as an important tool for the prevention of diseases, such as skin cancer, in the activities of individual or collective health education. (AU)

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA