Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell Rep ; 43(3): 113854, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412099

RESUMEN

The definition of cell metabolic profile is essential to ensure skeletal muscle fiber heterogeneity and to achieve a proper equilibrium between the self-renewal and commitment of satellite stem cells. Heme sustains several biological functions, including processes profoundly implicated with cell metabolism. The skeletal muscle is a significant heme-producing body compartment, but the consequences of impaired heme homeostasis on this tissue have been poorly investigated. Here, we generate a skeletal-muscle-specific feline leukemia virus subgroup C receptor 1a (FLVCR1a) knockout mouse model and show that, by sustaining heme synthesis, FLVCR1a contributes to determine the energy phenotype in skeletal muscle cells and to modulate satellite cell differentiation and muscle regeneration.


Asunto(s)
Proteínas de Transporte de Membrana , Células Satélite del Músculo Esquelético , Ratones , Animales , Proteínas de Transporte de Membrana/metabolismo , Hemo/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Metabolismo Energético , Células Satélite del Músculo Esquelético/metabolismo , Diferenciación Celular/fisiología
2.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38203802

RESUMEN

Mounting evidence underscores the intricate interplay between the immune system and skeletal muscles in Duchenne muscular dystrophy (DMD), as well as during regular muscle regeneration. While immune cell infiltration into skeletal muscles stands out as a prominent feature in the disease pathophysiology, a myriad of secondary defects involving metabolic and inflammatory pathways persist, with the key players yet to be fully elucidated. Steroids, currently the sole effective therapy for delaying onset and symptom control, come with adverse side effects, limiting their widespread use. Preliminary evidence spotlighting the distinctive features of T cell profiling in DMD prompts the immuno-characterization of circulating cells. A molecular analysis of their transcriptome and secretome holds the promise of identifying a subpopulation of cells suitable as disease biomarkers. Furthermore, it provides a gateway to unraveling new pathological pathways and pinpointing potential therapeutic targets. Simultaneously, the last decade has witnessed the emergence of novel approaches. The development and equilibrium of both innate and adaptive immune systems are intricately linked to the gut microbiota. Modulating microbiota-derived metabolites could potentially exacerbate muscle damage through immune system activation. Concurrently, genome sequencing has conferred clinical utility for rare disease diagnosis since innovative methodologies have been deployed to interpret the functional consequences of genomic variations. Despite numerous genes falling short as clinical targets for MD, the exploration of Tdark genes holds promise for unearthing novel and uncharted therapeutic insights. In the quest to expedite the translation of fundamental knowledge into clinical applications, the identification of novel biomarkers and disease targets is paramount. This initiative not only advances our understanding but also paves the way for the design of innovative therapeutic strategies, contributing to enhanced care for individuals grappling with these incapacitating diseases.


Asunto(s)
Investigación Biomédica , Microbioma Gastrointestinal , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Músculo Esquelético , Mapeo Cromosómico
4.
Biol Direct ; 18(1): 41, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501163

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy caused by mutations in the dystrophin gene. We characterized which isoforms of dystrophin were expressed by human induced pluripotent stem cell (hiPSC)-derived cardiac fibroblasts obtained from control and DMD patients. Distinct dystrophin isoforms were observed; however, highest molecular weight isoform was absent in DMD patients carrying exon deletions or mutations in the dystrophin gene. The loss of the full-length dystrophin isoform in hiPSC-derived cardiac fibroblasts from DMD patients resulted in deficient formation of actin microfilaments and a metabolic switch from mitochondrial oxidation to glycolysis. The DMD hiPSC-derived cardiac fibroblasts exhibited a dysregulated mitochondria network and reduced mitochondrial respiration, with enhanced compensatory glycolysis to sustain cellular ATP production. This metabolic remodeling was associated with an exacerbated myofibroblast phenotype and increased fibroblast activation in response to pro fibrotic challenges. As cardiac fibrosis is a critical pathological feature of the DMD heart, the myofibroblast phenotype induced by the absence of dystrophin may contribute to deterioration in cardiac function. Our study highlights the relationship between cytoskeletal dynamics, metabolism of the cell and myofibroblast differentiation and provides a new mechanism by which inactivation of dystrophin in non-cardiomyocyte cells may increase the severity of cardiopathy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Fenotipo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Fibroblastos/metabolismo , Fibrosis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Brain ; 146(6): 2227-2240, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729638

RESUMEN

Neurodegenerative diseases are a major global health burden particularly with the increasing ageing population. Hereditary predisposition and environmental risk factors contribute to the heterogeneity of existing pathological phenotypes. Traditional clinical interventions focused on the use of small drugs have often led to failures due to the difficulties in crossing the blood-brain barrier and reaching the brain. In this regard, nanosystems can specifically deliver drugs and improve their bioavailability, overcoming some of the major challenges in neurodegenerative disease treatment. This review focuses on the use of nanosystems as an encouraging therapeutic approach targeting molecular pathways involved in localized and systematic neurodegenerative diseases. Among the latter, Friedreich's ataxia is an untreatable complex multisystemic disorder and the most widespread type of ataxia; it represents a test case to validate the clinical potential of therapeutic strategies based on nanoparticles with pleiotropic effects.


Asunto(s)
Ataxia de Friedreich , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Ataxia de Friedreich/tratamiento farmacológico , Fenotipo
6.
EMBO Mol Med ; 15(3): e16244, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36533294

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive severe muscle-wasting disease caused by mutations in DMD, encoding dystrophin, that leads to loss of muscle function with cardiac/respiratory failure and premature death. Since dystrophic muscles are sensed by infiltrating inflammatory cells and gut microbial communities can cause immune dysregulation and metabolic syndrome, we sought to investigate whether intestinal bacteria support the muscle immune response in mdx dystrophic murine model. We highlighted a strong correlation between DMD disease features and the relative abundance of Prevotella. Furthermore, the absence of gut microbes through the generation of mdx germ-free animal model, as well as modulation of the microbial community structure by antibiotic treatment, influenced muscle immunity and fibrosis. Intestinal colonization of mdx mice with eubiotic microbiota was sufficient to reduce inflammation and improve muscle pathology and function. This work identifies a potential role for the gut microbiota in the pathogenesis of DMD.


Asunto(s)
Microbiota , Distrofia Muscular de Duchenne , Animales , Ratones , Distrofina/genética , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Disbiosis , Distrofia Muscular de Duchenne/genética , Sistema Inmunológico/metabolismo , Sistema Inmunológico/patología , Modelos Animales de Enfermedad
7.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36498987

RESUMEN

Muscle wasting is a major pathological feature observed in Duchenne muscular dystrophy (DMD) and is the result of the concerted effects of inflammation, oxidative stress and cell senescence. The inducible form of proteasome, or immunoproteasome (IP), is involved in all the above mentioned processes, regulating antigen presentation, cytokine production and immune cell response. IP inhibition has been previously shown to dampen the altered molecular, histological and functional features of 3-month-old mdx mice, the animal model for DMD. In this study, we described the role of ONX-0914, a selective inhibitor of the PSMB8 subunit of immunoproteasome, in ameliorating the pathological traits that could promote muscle wasting progression in older, 9-month-old mdx mice. ONX-0914 reduces the number of macrophages and effector memory T cells in muscle and spleen, while increasing the number of regulatory T cells. It modulates inflammatory markers both in skeletal and cardiac muscle, possibly counteracting heart remodeling and hypertrophy. Moreover, it buffers oxidative stress by improving mitochondrial efficiency. These changes ultimately lead to a marked decrease of fibrosis and, potentially, to more controlled myofiber degeneration/regeneration cycles. Therefore, ONX-0914 is a promising molecule that may slow down muscle mass loss, with relatively low side effects, in dystrophic patients with moderate to advanced disease.


Asunto(s)
Músculo Esquelético , Distrofia Muscular de Duchenne , Ratones , Animales , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miocardio/metabolismo , Macrófagos/metabolismo , Modelos Animales de Enfermedad
8.
Stem Cell Res ; 64: 102889, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35961103

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked syndrome that affects skeletal and cardiac muscle and is caused by mutation of the dystrophin gene. Induced pluripotent stem cells (iPSCs) were generated from dermal fibroblasts by electroporation with episomal vectors containing the reprogramming factors (OCT4, SOX2, LIN28, KLF4, and l-MYC). The donor carried an out-of-frame deletion of exons 45-50 of the dystrophin gene. The established iPSC line exhibited normal morphology, expressed pluripotency markers, had normal karyotype and possessed trilineage differentiation potential.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Exones/genética , Diferenciación Celular , Fibroblastos/metabolismo , Reprogramación Celular
9.
Biomedicines ; 9(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34944724

RESUMEN

Duchenne muscular dystrophy (DMD) is the most common, lethal, muscle-wasting disease of childhood [...].

10.
Cells ; 10(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34831140

RESUMEN

Nutraceutical products possess various anti-inflammatory, antiarrhythmic, cardiotonic, and antioxidant pharmacological activities that could be useful in preventing oxidative damage, mainly induced by reactive oxygen species. Previously published data showed that a mixture of polyphenols and polyunsaturated fatty acids, mediate an antioxidative response in mdx mice, Duchenne muscular dystrophy animal model. Dystrophic muscles are characterized by low regenerative capacity, fibrosis, fiber necrosis, inflammatory process, altered autophagic flux and inadequate anti-oxidant response. FLAVOmega ß is a mixture of flavonoids and docosahexaenoic acid. In this study, we evaluated the role of these supplements in the amelioration of the pathological phenotype in dystrophic mice through in vitro and in vivo assays. FLAVOmega ß reduced inflammation and fibrosis, dampened reactive oxygen species production, and induced an oxidative metabolic switch of myofibers, with consequent increase of mitochondrial activity, vascularization, and fatigue resistance. Therefore, we propose FLAVOmega ß as food supplement suitable for preventing muscle weakness, delaying inflammatory milieu, and sustaining physical health in patients affected from DMD.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Flavonoides/farmacología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Miocardio/patología , Animales , Autofagia/efectos de los fármacos , Cardiomiopatía Dilatada/patología , Línea Celular , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Ácidos Grasos Omega-3/administración & dosificación , Fibrosis , Flavonoides/administración & dosificación , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos
11.
Biomedicines ; 9(10)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34680564

RESUMEN

Growing evidence demonstrates the crosstalk between the immune system and the skeletal muscle in inflammatory muscle diseases and dystrophic conditions such as Duchenne Muscular Dystrophy (DMD), as well as during normal muscle regeneration. The rising of inflammation and the consequent activation of the immune system are hallmarks of DMD: several efforts identified the immune cells that invade skeletal muscle as CD4+ and CD8+ T cells, Tregs, macrophages, eosinophils and natural killer T cells. The severity of muscle injury and inflammation dictates the impairment of muscle regeneration and the successive replacement of myofibers with connective and adipose tissue. Since immune system activation was traditionally considered as a consequence of muscular wasting, we recently demonstrated a defect in central tolerance caused by thymus alteration and the presence of autoreactive T-lymphocytes in DMD. Although the study of innate and adaptive immune responses and their complex relationship in DMD attracted the interest of many researchers in the last years, the results are so far barely exhaustive and sometimes contradictory. In this review, we describe the most recent improvements in the knowledge of immune system involvement in DMD pathogenesis, leading to new opportunities from a clinical point-of-view.

12.
Front Immunol ; 12: 666879, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335568

RESUMEN

Muscular dystrophies and inflammatory myopathies are heterogeneous muscular disorders characterized by progressive muscle weakness and mass loss. Despite the high variability of etiology, inflammation and involvement of both innate and adaptive immune response are shared features. The best understood immune mechanisms involved in these pathologies include complement cascade activation, auto-antibodies directed against muscular proteins or de-novo expressed antigens in myofibers, MHC-I overexpression in myofibers, and lymphocytes-mediated cytotoxicity. Intravenous immunoglobulins (IVIGs) administration could represent a suitable immunomodulator with this respect. Here we focus on mechanisms of action of immunoglobulins in muscular dystrophies and inflammatory myopathies highlighting results of IVIGs from pre-clinical and case reports evidences.


Asunto(s)
Autoinmunidad , Inmunoglobulinas/inmunología , Distrofias Musculares/inmunología , Miositis/inmunología , Autoanticuerpos/inmunología , Humanos , Inmunoglobulinas/metabolismo , Proteínas Musculares/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Miositis/metabolismo , Miositis/patología
13.
Nat Commun ; 12(1): 2099, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833239

RESUMEN

In Duchenne muscular dystrophy (DMD), sarcolemma fragility and myofiber necrosis produce cellular debris that attract inflammatory cells. Macrophages and T-lymphocytes infiltrate muscles in response to damage-associated molecular pattern signalling and the release of TNF-α, TGF-ß and interleukins prevent skeletal muscle improvement from the inflammation. This immunological scenario was extended by the discovery of a specific response to muscle antigens and a role for regulatory T cells (Tregs) in muscle regeneration. Normally, autoimmunity is avoided by autoreactive T-lymphocyte deletion within thymus, while in the periphery Tregs monitor effector T-cells escaping from central regulatory control. Here, we report impairment of thymus architecture of mdx mice together with decreased expression of ghrelin, autophagy dysfunction and AIRE down-regulation. Transplantation of dystrophic thymus in recipient nude mice determine the up-regulation of inflammatory/fibrotic markers, marked metabolic breakdown that leads to muscle atrophy and loss of force. These results indicate that involution of dystrophic thymus exacerbates muscular dystrophy by altering central immune tolerance.


Asunto(s)
Tolerancia Inmunológica/inmunología , Músculo Esquelético/patología , Atrofia Muscular/patología , Distrofia Muscular Animal/patología , Timo/patología , Animales , Autofagia/fisiología , Ghrelina/biosíntesis , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Desnudos , Distrofia Muscular de Duchenne/patología , Linfocitos T/trasplante , Linfocitos T Reguladores/inmunología , Timo/trasplante , Factores de Transcripción/biosíntesis , Proteína AIRE
14.
Front Physiol ; 11: 403, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508664

RESUMEN

Pentraxin 3 (PTX3) is a main component of the innate immune system by inducing complement pathway activation, acting as an inflammatory mediator, coordinating the functions of macrophages/dendritic cells and promoting apoptosis/necrosis. Additionally, it has been found in fibrotic regions co-localizing with collagen. In this work, we wanted to investigate the predictive role of PTX3 in myocardial damage and fibrosis of Duchenne muscular dystrophy (DMD). DMD is an X-linked recessive disease caused by mutations of the dystrophin gene that affects muscular functions and strength and accompanying dilated cardiomyopathy. Here, we expound the correlation of PTX3 cardiac expression with age and Toll-like receptors (TLRs)/interleukin-1 receptor (IL-1R)-MyD88 inflammatory markers and its modulation by the so-called alarmins IL-33, high-mobility group box 1 (HMGB1), and S100ß. These findings suggest that cardiac levels of PTX3 might have prognostic value and potential in guiding therapy for DMD cardiomyopathy.

15.
Stem Cell Res ; 45: 101819, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32348941

RESUMEN

Becker Muscular dystrophy (BMD) is an X-linked syndrome characterized by progressive muscle weakness. BMD is generally less severe than Duchenne Muscular Dystrophy. BMD is caused by mutations in the dystrophin gene that normally give rise to the production of a truncated but partially functional dystrophin protein. We generated an induced pluripotent cell line from dermal fibroblasts of a BMD patient carrying a splice mutation in the dystrophin gene (c.1705-8 T>C). The iPSC cell-line displayed the characteristic pluripotent-like morphology, expressed pluripotency markers, differentiated into cells of the three germ layers and had a normal karyotype.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofia Muscular de Duchenne , Distrofina/genética , Exones , Humanos , Distrofia Muscular de Duchenne/genética , Mutación
16.
Cells ; 9(2)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32075092

RESUMEN

The insulin-like growth factor 2 receptor (IGF2R) plays a major role in binding and regulating the circulating and tissue levels of the mitogenic peptide insulin-like growth factor 2 (IGF2). IGF2/IGF2R interaction influences cell growth, survival, and migration in normal tissue development, and the deregulation of IGF2R expression has been associated with growth-related disease and cancer. IGF2R overexpression has been implicated in heart and muscle disease progression. Recent research findings suggest novel approaches to target IGF2R action. This review highlights recent advances in the understanding of the IGF2R structure and pathways related to muscle homeostasis.


Asunto(s)
Músculos/metabolismo , Distrofias Musculares/metabolismo , Receptor IGF Tipo 2/metabolismo , Animales , Homeostasis , Humanos
17.
EMBO Mol Med ; 12(1): e11019, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31793167

RESUMEN

Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca2+ channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) and removal of intracellular Ca2+ . Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD.


Asunto(s)
Músculo Esquelético/crecimiento & desarrollo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Receptor IGF Tipo 2/antagonistas & inhibidores , Regeneración , Animales , Sitios de Unión , Niño , Humanos , Ratones , Ratones Endogámicos mdx , Mioblastos , Adulto Joven
18.
Front Neurol ; 10: 755, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396142

RESUMEN

Background: Nutritional compounds can exert both anti-inflammatory and anti-oxidant effects. Since these events exacerbate the pathophysiology of muscular dystrophies, we investigated nutraceutical supplementation as an adjuvant therapy in dystrophic patients, to low costs and easy route of administration. Moreover, this treatment could represent an alternative therapeutic strategy for dystrophic patients who do not respond to corticosteroid treatment. Objective: A 24 weeks randomized double-blind placebo-controlled clinical study was aimed at evaluating the safety and efficacy of daily oral administration of flavonoids- and omega3-based natural supplement (FLAVOMEGA) in patients affected by muscular dystrophy with recognized muscle inflammation. Design: We screened 60 patients diagnosed for Duchenne (DMD), Facioscapulohumeral (FSHD), and Limb Girdle Muscular Dystrophy (LGMD). Using a computer-generated random allocation sequence, we stratified patients in a 2:1:1 ratio (DMD:FSHD:LGMD) to one of two treatment groups: continuous FLAVOMEGA, continuous placebo. Of 29 patients included, only 24 completed the study: 15 were given FLAVOMEGA, 14 placebo. Results: FLAVOMEGA was well tolerated with no reported adverse events. Significant treatment differences in the change from baseline in 6 min walk distance (6MWD; secondary efficacy endpoint) (P = 0.033) and in isokinetic knee extension (P = 0.039) (primary efficacy endpoint) were observed in LGMD and FSHD subjects. Serum CK levels (secondary efficacy endpoint) decreased in all FLAVOMEGA treated groups with significant difference in DMD subjects (P = 0.039). Conclusions: Although the small number of patients and the wide range of disease severity among patients reduced statistical significance, we obtained an optimal profile of safety and tolerability for the compound, showing valuable data of efficacy in primary and secondary endpoints. Trial registration number: NCT03317171 Retrospectively registered 25/10/2017.

19.
Stem Cell Res ; 40: 101544, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31465894

RESUMEN

Duchenne's muscular dystrophy (DMD) is a neuromuscular disorder affecting skeletal and cardiac muscle function, caused by mutations in the dystrophin (DMD) gene. Dermal fibroblasts, isolated from a DMD patient with a reported deletion of exons 51 to 53 in the DMD gene, were reprogramed into induced pluripotent stem cells (iPSCs) by electroporation with episomal vectors containing the reprograming factors: OCT4, SOX2, LIN28, KLF4, and L-MYC. The obtained iPSC line showed iPSC morphology, expression of pluripotency markers, possessed trilineage differentiation potential and was karyotypically normal.


Asunto(s)
Distrofina/genética , Células Madre Pluripotentes Inducidas/citología , Distrofia Muscular de Duchenne/patología , Diferenciación Celular , Línea Celular , Reprogramación Celular , Dermis/citología , Exones , Fibroblastos/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipo , Factor 4 Similar a Kruppel , Masculino , Distrofia Muscular de Duchenne/genética , Eliminación de Secuencia , Factores de Transcripción/genética
20.
Am J Pathol ; 189(2): 339-353, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30448404

RESUMEN

Patients affected by Duchenne muscular dystrophy (DMD) develop a progressive dilated cardiomyopathy characterized by inflammatory cell infiltration, necrosis, and cardiac fibrosis. Standard treatments consider the use of ß-blockers and angiotensin-converting enzyme inhibitors that are symptomatic and unspecific toward DMD disease. Medications that target DMD cardiac fibrosis are in the early stages of development. We found immunoproteasome dysregulation in affected hearts of mdx mice (murine animal model of DMD) and cardiomyocytes derived from induced pluripotent stem cells of patients with DMD. Interestingly, immunoproteasome inhibition ameliorated cardiomyopathy in mdx mice and reduced the development of cardiac fibrosis. Establishing the immunoproteasome inhibition-dependent cardioprotective role suggests the possibility of modulating the immunoproteasome as new and clinically relevant treatment to rescue dilated cardiomyopathy in patients with DMD.


Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Miocitos Cardíacos , Complejo de la Endopetidasa Proteasomal/inmunología , Animales , Cardiomiopatías/inmunología , Cardiomiopatías/patología , Fibrosis , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/patología , Masculino , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/patología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA