Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Pharm ; 642: 123138, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37307962

RESUMEN

The objective of this study was to explore the aerosolization performance of powders produced with different mesh nebulizer sources in the initial design of a new small-particle spray dryer system. An aqueous excipient enhanced growth (EEG) model formulation was spray dried using different mesh sources and the resulting powders were characterized based on (i) laser diffraction, (ii) aerosolization with a new infant air-jet dry powder inhaler, and (iii) aerosol transport through an infant nose-throat (NT) model ending with a tracheal filter. While few differences were observed among the powders, the medical-grade Aerogen Solo (with custom holder) and Aerogen Pro mesh sources were selected as lead candidates that produced mean fine particle fractions <5 µm and <1 µm in ranges of 80.6-77.4% and 13.1-16.0%, respectively. Improved aerosolization performance was achieved at a lower spray drying temperature. Lung delivery efficiencies through the NT model were in the range of 42.5-45.8% for powders from the Aerogen mesh sources, which were very similar to previous results with a commercial spray dryer. Ultimately, a custom spray dryer that can accept meshes with different characteristics (e.g., pore sizes and liquid flow rates) will provide particle engineers greater flexibility in producing highly dispersible powders with unique characteristics.


Asunto(s)
Química Farmacéutica , Mallas Quirúrgicas , Humanos , Polvos , Química Farmacéutica/métodos , Tamaño de la Partícula , Aerosoles , Administración por Inhalación , Inhaladores de Polvo Seco/métodos
2.
Pharm Res ; 38(9): 1615-1632, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34462876

RESUMEN

PURPOSE: In order to improve the delivery of dry powder aerosol formulations to the lungs of infants, this study implemented an infant air-jet platform and explored the effects of different air sources, flow rates, and pulmonary mechanics on aerosolization performance and aerosol delivery through a preterm nose-throat (NT) in vitro model. METHODS: The infant air-jet platform was actuated with a positive-pressure air source that delivered the aerosol and provided a full inhalation breath. Three different air sources were developed to provide highly controllable positive-pressure air actuations (using actuation volumes of ~10 mL for the preterm model). While providing different flow waveform shapes, the three air sources were calibrated to produce the same flow rate magnitude (Q90: 90th percentile of flow rate). Multiple air-jet DPI designs were coupled with the air sources and evaluated with a model spray-dried excipient enhanced growth formulation. RESULTS: Compared to other designs, the D1-Single air-jet DPI provided improved performance with low variability across all three air sources. With the tested D1-Single air-jet and Timer air source, reducing the flow rate from 4 to 1.7 L/min marginally decreased the aerosol size and significantly increased the lung delivery efficiency above 50% of the loaded dose. These results were not impacted by the presence of downstream pulmonary mechanics (resistance and compliance model). CONCLUSIONS: The selected design was capable of providing an estimated >50% lung delivery efficiency of a model spray-dried formulation and was not influenced by the air source, thereby enabling greater flexibility for platform deployment in different environments.


Asunto(s)
Química Farmacéutica/métodos , Inhaladores de Polvo Seco/métodos , Polvos/química , Administración por Inhalación , Aerosoles/química , Diseño de Equipo/métodos , Excipientes/química , Humanos , Lactante , Pulmón/metabolismo , Nariz/efectos de los fármacos , Tamaño de la Partícula
3.
AAPS PharmSciTech ; 22(4): 135, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33860378

RESUMEN

Efficient delivery of dry powder aerosols dispersed with low volumes of air is challenging. This study aims to develop an efficient dry powder inhaler (DPI) capable of delivering spray-dried Survanta-EEG powders (3-10 mg) with a low volume (3 mL) of dispersion air. A series of iterative design modifications were made to a base low air volume actuated DPI. The modifications included the replacement of the original capsule chamber with an integral dose containment chamber, alteration of the entrainment air flow path through the device (from single-sided (SS) to straight through (ST)), change in the number of air inlet holes (from one to three), varying the outlet delivery tube length (45, 55, and 90 mm) and internal diameter (0.60, 0.89, and 1.17 mm). The modified devices were evaluated by determining the influence of the modifications and powder fill mass on aerosol performance of spray-dried Survanta-EEG powders. The optimal DPI was also evaluated for its ability to aerosolize a micronized powder. The optimized dose containment unit DPI had a 0.21 mL powder chamber, ST airflow path, three-0.60 mm air inlet holes, and 90 mm outlet delivery tube with 0.89 mm internal diameter. The powder dispersion characteristics of the optimal device were independent of fill mass with good powder emptying in one 3 mL actuation. At 10 mg fill mass, this device had an emitted mass of 5.3 mg with an aerosol Dv50 of 2.7 µm. After three 3 mL actuations, >85% of the spray-dried powder was emitted from the device. The emitted mass of the optimal device with micronized albuterol sulfate was >72% of the nominal fill mass of 10 mg in one 3 mL actuation. Design optimization produced a DPI capable of efficient performance with a dispersion air volume of 3 mL to aerosolize Survanta-EEG powders.


Asunto(s)
Aerosoles/administración & dosificación , Albuterol/administración & dosificación , Inhaladores de Polvo Seco/instrumentación , Excipientes/administración & dosificación , Tensoactivos/administración & dosificación , Administración por Inhalación , Animales , Composición de Medicamentos , Diseño de Equipo , Tamaño de la Partícula , Polvos
4.
AAPS PharmSciTech ; 22(4): 136, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33860409

RESUMEN

This study aimed to develop and characterize a spray-dried powder aerosol formulation of a commercially available surfactant formulation, Survanta® intratracheal suspension, using the excipient enhanced growth (EEG) approach. Survanta EEG powders were prepared by spray drying of the feed dispersions containing Survanta® (beractant) intratracheal suspension, hygroscopic excipients (mannitol and sodium chloride), and a dispersion enhancer (l-leucine or trileucine) in 5 or 20% v/v ethanol in water using the Buchi Nano Spray Dryer B-90 HP. Powders were characterized for primary particle size, morphology, phospholipid content, moisture content, thermal properties, moisture sorption, and surface activity. The aerosol performance of the powders was assessed using a novel low-volume dry powder inhaler (LV-DPI) device operated with 3-mL volume of dispersion air. At both ethanol concentrations, in comparison to trileucine, l-leucine significantly reduced the primary particle size and span and increased the fraction of submicrometer particles of the Survanta EEG powders. The l-leucine-containing Survanta EEG powders exhibited good aerosolization performance with ≥ 88% of the mass emitted (% nominal) after 3 actuations from the modified LV-DPI device. In addition, l-leucine-containing powders had a low moisture content (< 3% w/w) with transition temperatures close to the commercial surfactant formulation and retained their surface tension reducing activity after formulation processing. A Survanta EEG powder containing l-leucine was developed which showed efficient aerosol delivery from the modified LV-DPI device using a low dispersion air volume.


Asunto(s)
Inhaladores de Polvo Seco , Polvos , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Tensoactivos/administración & dosificación , Administración por Inhalación , Aerosoles , Excipientes , Humanos , Recién Nacido , Recien Nacido Prematuro , Leucina/administración & dosificación , Tamaño de la Partícula , Humectabilidad
5.
J Aerosol Med Pulm Drug Deliv ; 33(6): 314-322, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32453638

RESUMEN

Background: In neonatal respiratory distress syndrome, breathing support and surfactant therapy are commonly used to enable the alveoli to expand. Surfactants are typically delivered through liquid instillation. However, liquid instillation does not specifically target the small airways. We have developed an excipient enhanced growth (EEG) powder aerosol formulation using Survanta®. Methods: EEG Survanta powder aerosol was delivered using a novel dry powder inhaler via tracheal insufflation to surfactant depleted rats at nominal doses of 3, 5, 10, and 20 mg of powder containing 0.61, 0.97, 1.73, and 3.46 mg of phospholipids (PL), whereas liquid Survanta was delivered via syringe instillation at doses of 2 and 4 mL/kg containing 18.6 and 34 mg of PL. Ventilation mechanics were measured before and after depletion, and after treatment. We hypothesized that EEG Survanta powder aerosol would improve lung mechanics compared with instilled liquid Survanta in surfactant depleted rats. Results and Conclusion: EEG Survanta powder aerosol at a dose of 0.61 mg PL significantly improved lung compliance and elastance compared with the liquid Survanta at a dose of 18.6 mg, which represents improved primary efficacy of the aerosol at a 30-fold lower dose of PL. There was no significant difference in white blood cell count of the lavage from the EEG Survanta group compared with liquid Survanta. These results provide an in vivo proof-of-concept for EEG Survanta powder aerosol as a promising method of surfactant replacement therapy.


Asunto(s)
Lesión Pulmonar/tratamiento farmacológico , Surfactantes Pulmonares/administración & dosificación , Aerosoles , Animales , Modelos Animales de Enfermedad , Excipientes , Tamaño de la Partícula , Polvos , Ratas , Ratas Sprague-Dawley
6.
J Aerosol Med Pulm Drug Deliv ; 31(2): 103-108, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28880765

RESUMEN

BACKGROUND: Current in vitro approaches to assess lung deposition, dissolution, and cellular transport behavior of orally inhaled products (OIPs) have relied on compendial impactors to collect drug particles that are likely to deposit in the airway; however, the main drawback with this approach is that these impactors do not reflect the airway and may not necessarily represent drug deposition behavior in vivo. The aim of this article is to describe the development and method validation of a novel hybrid in vitro approach to assess drug deposition and permeation behavior in a more representative airway model. METHODS: The medium-sized Virginia Commonwealth University (VCU) mouth-throat (MT) and tracheal-bronchial (TB) realistic upper airway models were used in this study as representative models of the upper airway. The TB model was modified to accommodate two Snapwell® inserts above the first TB airway bifurcation region to collect deposited nebulized ciprofloxacin-hydrochloride (CIP-HCL) droplets as a model drug aerosol system. Permeation characteristics of deposited nebulized CIP-HCL droplets were assessed across different synthetic membranes using the Snapwell test system. RESULTS: The Snapwell test system demonstrated reproducible and discriminatory drug permeation profiles for already dissolved and nebulized CIP-HCL droplets through a range of synthetic permeable membranes under different test conditions. The rate and extent of drug permeation depended on the permeable membrane material used, presence of a stirrer in the receptor compartment, and, most importantly, the drug collection method. CONCLUSIONS: This novel hybrid in vitro approach, which incorporates a modified version of a realistic upper airway model, coupled with the Snapwell test system holds great potential to evaluate postairway deposition characteristics, such as drug permeation and particle dissolution behavior of OIPs. Future studies will expand this approach using a cell culture-based setup instead of synthetic membranes, within a humidified chamber, to assess airway epithelia transport behavior in a more representative manner.


Asunto(s)
Aerosoles , Ciprofloxacina/administración & dosificación , Sistemas de Liberación de Medicamentos , Modelos Anatómicos , Administración por Inhalación , Bronquios/metabolismo , Ciprofloxacina/farmacocinética , Liberación de Fármacos , Humanos , Pulmón/metabolismo , Reproducibilidad de los Resultados , Distribución Tisular , Tráquea/metabolismo
7.
Ann Biomed Eng ; 43(11): 2804-15, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25986955

RESUMEN

The objective of this study was to develop a new high-efficiency dry powder inhaler (DPI) that can effectively aerosolize large masses (25-100 mg) of spray dried powder formulations. The DPI was designed to implement a concept similar to a fluidized bed for aerosolization using small mixing balls made of polytetrafluoroethylene along with a larger, hollow dosing sphere filled with the powder. The performance of the fluidized bed DPI was compared, based on emitted dose (ED) and aerosolization efficiency, to other recently developed capsule-based DPIs that were designed to accommodate smaller powder masses (~2-20 mg). The inhalers were tested with spray dried excipient enhanced growth (EEG) formulations that contained an antibiotic (ciprofloxacin) and hygroscopic excipient (mannitol). The new fluidized bed design produced an ED of 71% along with a mass median aerodynamic diameter of 1.53 µm and fine particle fractions <5 and 1 µm of 93 and 36%, respectively, when used to deliver a 100 mg loaded mass of EEG powder with the advantage of not requiring multiple capsules. Surprisingly, performance of the device was further improved by removing the mixing balls from the inhaler and only retaining the dose containment sphere.


Asunto(s)
Inhaladores de Polvo Seco , Aerosoles , Antibacterianos , Ciprofloxacina , Diseño de Equipo , Excipientes , Manitol , Tamaño de la Partícula , Polvos , Presión
8.
J Aerosol Med Pulm Drug Deliv ; 28(3): 189-201, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25192072

RESUMEN

PURPOSE: Delivering aerosols to the lungs through the nasal route has a number of advantages, but its use has been limited by high depositional loss in the extrathoracic airways. The objective of this study was to evaluate the nose-to-lung (N2L) delivery of excipient enhanced growth (EEG) formulation aerosols generated with a new inline dry powder inhaler (DPI). The device was also adapted to enable aerosol delivery to a patient simultaneously receiving respiratory support from high flow nasal cannula (HFNC) therapy. METHODS: The inhaler delivered the antibiotic ciprofloxacin, which was formulated as submicrometer combination particles containing a hygroscopic excipient prepared by spray-drying. Nose-to-lung delivery was assessed using in vitro and computational fluid dynamics (CFD) methods in an airway model that continued through the upper tracheobronchial region. RESULTS: The best performing device contained a 2.3 mm flow control orifice and a 3D rod array with a 3-4-3 rod pattern. Based on in vitro experiments, the emitted dose from the streamlined nasal cannula had a fine particle fraction <5 µm of 95.9% and mass median aerodynamic diameter of 1.4 µm, which was considered ideal for nose-to-lung EEG delivery. With the 2.3-343 device, condensational growth in the airways increased the aerosol size to 2.5-2.7 µm and extrathoracic deposition was <10%. CFD results closely matched the in vitro experiments and predicted that nasal deposition was <2%. CONCLUSIONS: The developed DPI produced high efficiency aerosolization with significant size increase of the aerosol within the airways that can be used to enable nose-to-lung delivery and aerosol administration during HFNC therapy.


Asunto(s)
Antibacterianos/administración & dosificación , Ciprofloxacina/administración & dosificación , Inhaladores de Polvo Seco , Pulmón/anatomía & histología , Nariz/anatomía & histología , Administración Intranasal , Aerosoles , Antibacterianos/química , Cateterismo/instrumentación , Catéteres , Química Farmacéutica , Ciprofloxacina/química , Simulación por Computador , Diseño de Equipo , Excipientes/química , Humanos , Modelos Anatómicos , Ventilación no Invasiva/instrumentación , Tamaño de la Partícula , Polvos , Humectabilidad
9.
Int J Pharm ; 465(1-2): 52-62, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24508552

RESUMEN

New active dry powder inhaler systems were developed and tested to efficiently aerosolize a carrier-free formulation. To assess inhaler performance, a challenging case study of aerosol lung delivery during high-flow nasal cannula (HFNC) therapy was selected. The active delivery system consisted of a ventilation bag for actuating the device, the DPI containing a flow control orifice and 3D rod array, and streamlined nasal cannula with separate inlets for the aerosol and HFNC therapy gas. In vitro experiments were conducted to assess deposition in the device, emitted dose (ED) from the nasal cannula, and powder deaggregation. The best performing systems achieved EDs of 70-80% with fine particle fractions <5 µm of 65-85% and mass median aerodynamic diameters of 1.5 µm, which were target conditions for controlled condensational growth aerosol delivery. Decreasing the size of the flow control orifice from 3.6 to 2.3mm reduced the flow rate through the system with manual bag actuations from an average of 35 to 15LPM, while improving ED and aerosolization performance. The new devices can be applied to improve aerosol delivery during mechanical ventilation, nose-to-lung aerosol administration, and to assist patients that cannot reproducibly use passive DPIs.


Asunto(s)
Albuterol/administración & dosificación , Sistemas de Liberación de Medicamentos/instrumentación , Inhaladores de Polvo Seco , Respiración Artificial/instrumentación , Administración por Inhalación , Aerosoles , Albuterol/química , Química Farmacéutica , Diseño de Equipo , Humanos , Tamaño de la Partícula , Tecnología Farmacéutica/métodos
10.
J Pharm Sci ; 103(2): 465-77, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24307605

RESUMEN

High-efficiency dry powder inhalers (DPIs) were developed and tested for use with carrier-free formulations across a range of different inhalation flow rates. Performance of a previously reported DPI was compared with two new designs in terms of emitted dose (ED) and aerosolization characteristics using in vitro experiments. The two new designs oriented the capsule chamber (CC) at different angles to the main flow passage, which contained a three-dimensional (3D) rod array for aerosol deaggregation. Computational fluid dynamics simulations of a previously developed deaggregation parameter, the nondimensional specific dissipation (NDSD), were used to explain device performance. Orienting the CC at 90° to the mouthpiece, the CC90 -3D inhaler provided the best performance with an ED = 73.4%, fine particle fractions (FPFs) less than 5 and 1 µm of 95.1% and 31.4%, respectively, and a mass median aerodynamic diameter (MMAD) = 1.5 µm. For the carrier-free formulation, deaggregation was primarily influenced by capsule aperture position and the NDSD parameter. The new CC-3D inhalers reduced the percent difference in FPF and MMAD between low and high flows by 1-2 orders of magnitude compared with current commercial devices. In conclusion, the new CC-3D inhalers produced extremely high-quality aerosols with little sensitivity to flow rate and are expected to deliver approximately 95% of the ED to the lungs.


Asunto(s)
Química Farmacéutica/métodos , Inhaladores de Polvo Seco , Aerosoles , Análisis de Varianza , Antiasmáticos/administración & dosificación , Antiasmáticos/química , Cromatografía Líquida de Alta Presión , Portadores de Fármacos , Diseño de Equipo , Excipientes , Tamaño de la Partícula , Fotograbar , Politetrafluoroetileno
11.
Pharm Res ; 31(2): 360-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23949304

RESUMEN

PURPOSE: The objective of this study was to explore the performance of a high efficiency dry powder inhaler (DPI) intended for excipient enhanced growth (EEG) aerosol delivery based on changes to the capsule orientation and surface modifications of the capsule and device. METHODS: DPIs were constructed by combining newly designed capsule chambers (CC) with a previously developed three-dimensional (3D) rod array for particle deagglomeration and a previously optimized EEG formulation. The new CCs oriented the capsule perpendicular to the incoming airflow and were analyzed for different air inlets at a constant pressure drop across the device. Modifications to the inhaler and capsule surfaces included use of metal dispersion rods and surface coatings. Aerosolization performance of the new DPIs was evaluated and compared with commercial devices. RESULTS: The proposed capsule orientation and motion pattern increased capsule vibrational frequency and reduced the aerosol MMAD compared with commercial/modified DPIs. The use of metal rods in the 3D array further improved inhaler performance. Coating the inhaler and capsule with PTFE significantly increased emitted dose (ED) from the optimized DPI. CONCLUSIONS: High efficiency performance is achieved for EEG delivery with the optimized DPI device and formulation combination producing an aerosol with MMAD < 1.5 µm, FPF<5 µm/ED > 90%, and ED > 80%.


Asunto(s)
Aerosoles/química , Cápsulas/química , Preparaciones Farmacéuticas/química , Polvos/química , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Inhaladores de Polvo Seco/métodos , Excipientes/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA