Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446032

RESUMEN

Cell motility processes highly depend on the membrane distribution of Phosphoinositides, giving rise to cytoskeleton reshaping and membrane trafficking events. Membrane contact sites serve as platforms for direct lipid exchange and calcium fluxes between two organelles. Here, we show that VAPA, an ER transmembrane contact site tether, plays a crucial role during cell motility. CaCo2 adenocarcinoma epithelial cells depleted for VAPA exhibit several collective and individual motility defects, disorganized actin cytoskeleton and altered protrusive activity. During migration, VAPA is required for the maintenance of PI(4)P and PI(4,5)P2 levels at the plasma membrane, but not for PI(4)P homeostasis in the Golgi and endosomal compartments. Importantly, we show that VAPA regulates the dynamics of focal adhesions (FA) through its MSP domain, is essential to stabilize and anchor ventral ER-PM contact sites to FA, and mediates microtubule-dependent FA disassembly. To conclude, our results reveal unknown functions for VAPA-mediated membrane contact sites during cell motility and provide a dynamic picture of ER-PM contact sites connection with FA mediated by VAPA.


Asunto(s)
Adhesiones Focales , Aparato de Golgi , Humanos , Células CACO-2 , Citoesqueleto de Actina , Movimiento Celular , Proteínas de Transporte Vesicular
2.
J Biomed Opt ; 28(6): 066501, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37334209

RESUMEN

Significance: Adaptive optics (AO) has been implemented on several microscopy setups and has proven its ability to increase both signal and resolution. However, reported configurations are not suited for fast imaging of live samples or are based on an invasive or complex implementation method. Aim: Provide a fast aberration correction method with an easy to implement AO module compatible with light-sheet fluorescence microscopy (LSFM) for enhanced imaging of live samples. Approach: Development of an AO add-on module for LSFM based on direct wavefront sensing without requiring a guide star using an extended-scene Shack-Hartmann wavefront sensor. The enhanced setup uses a two-color sample labeling strategy to optimize the photon budget. Results: Fast AO correction of in-depth aberrations in an ex-vivo adult Drosophila brain enables doubling the contrast when imaging with either cell reporters or calcium sensors for functional imaging. We quantify the gain in terms of image quality on different functional domains of sleep neurons in the Drosophila brain at various depths and discuss the optimization of key parameters driving AO. Conclusion: We developed a compact AO module that can be integrated into most of the reported light-sheet microscopy setups, provides significant improvement of image quality and is compatible with fast imaging requirements such as calcium imaging.


Asunto(s)
Calcio , Drosophila melanogaster , Animales , Microscopía Fluorescente , Drosophila , Neuroimagen , Encéfalo/diagnóstico por imagen
3.
Opt Lett ; 44(10): 2514-2517, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31090720

RESUMEN

We propose an adaptive optics light-sheet fluorescence microscope (AO-LSFM) for closed-loop aberrations' correction at the emission path, providing intrinsic instrumental simplicity and high accuracy when compared to previously reported schemes. The approach is based on direct wavefront sensing, i.e., not on time-consuming iterative algorithms, and does not require the use of any guide star, thus reducing instrumental complexity and/or sample preparation constraints. The design is based on a modified Shack-Hartmann wavefront sensor providing compatibility with extended sources such as images from optical sectioning microscopes. We report an AO-LSFM setup based on such sensors, including characterization of the sensor performance, and demonstrate for the first time to the best of our knowledge a significant contrast improvement on neuronal structures of the ex vivo adult drosophila brain in depth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA