Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474061

RESUMEN

Chronic inflammation is a key player in metabolic dysfunction-associated fatty liver disease (MAFLD) progression. Necroptosis, an inflammatory cell death pathway, is elevated in MAFLD patients and mouse models, yet its role is unclear due to the diverse mouse models and inhibition strategies. In our study, we inhibited necroptosis by targeting mixed lineage kinase domain-like pseudokinase (MLKL), the terminal effector of necroptosis, in a high-fat, high-fructose, high-cholesterol (HFHFrHC) mouse model of diet-induced MAFLD. Despite the HFHFrHC diet upregulating MLKL (2.5-fold), WT mice livers showed no increase in necroptosis markers or associated proinflammatory cytokines. Surprisingly, Mlkl-/- mice experienced exacerbated liver inflammation without protection from diet-induced liver damage, steatosis, or fibrosis. In contrast, Mlkl+/- mice showed a significant reduction in these parameters that was associated with elevated Pparα and Pparγ levels. Both Mlkl-/- and Mlkl+/- mice on the HFHFrHC diet resisted diet-induced obesity, attributed to the increased beiging, enhanced oxygen consumption, and energy expenditure due to adipose tissue, and exhibited improved insulin sensitivity. These findings highlight the tissue-specific effects of MLKL on the liver and adipose tissue, and they suggest a dose-dependent effect of MLKL on liver pathology.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Fructosa , Proteínas Quinasas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/metabolismo , Modelos Animales de Enfermedad , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo/metabolismo , Inflamación , Colesterol , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
2.
iScience ; 26(1): 105750, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590177

RESUMEN

Establishing metabolic programming begins during fetal and postnatal development, and early-life lipid exposures play a critical role during neonatal adipogenesis. We define how neonatal consumption of a low omega-6 to -3 fatty acid ratio (n6/n3 FA ratio) establishes FA oxidation in adipocyte precursor cells (APCs) before they become adipocytes. In vivo, APCs isolated from mouse pups exposed to the low n6/n3 FA ratio had superior FA oxidation capacity, elevated beige adipocyte mRNAs Ppargc1α, Ucp2, and Runx1, and increased nuclear receptor NR2F2 protein. In vitro, APC treatment with NR2F2 ligand-induced beige adipocyte mRNAs and increased mitochondrial potential but not mass. Single-cell RNA-sequencing analysis revealed low n6/n3 FA ratio yielded more mitochondrial-high APCs and linked APC NR2F2 levels with beige adipocyte signatures and FA oxidation. Establishing beige adipogenesis is of clinical relevance, because fat depots with energetically active, smaller, and more numerous adipocytes improve metabolism and delay metabolic dysfunction.

3.
Nutrients ; 14(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296922

RESUMEN

The prevalence of childhood obesity has increased nearly ten times over the last 40 years, influenced by early life nutrients that have persistent effects on life-long metabolism. During the first six months, infants undergo accelerated adipose accumulation, but little is known regarding infant fatty acid status and its relationship to infant body composition. We tested the hypothesis that a low arachidonic to docosahexaenoic acid ratio (AA/DHA) in infant red blood cells (RBCs), a long-term indicator of fatty acid intake, would associate with more infant fat-free mass (FFM) and/or less adipose accumulation over the first 4 months of life. The fatty acid and composition of breastmilk and infant RBCs, as well as the phospholipid composition of infant RBCs, were quantified using targeted and unbiased lipid mass spectrometry from infants predominantly breastfed or predominantly formula-fed. Regardless of feeding type, FFM accumulation was inversely associated with the infant's RBC AA/DHA ratio (p = 0.029, R2 = 0.216). Infants in the lowest AA/DHA ratio tertile had significantly greater FFM when controlling for infant sex, adiposity at 2 weeks, and feeding type (p < 0.0001). Infant RBC phospholipid analyses revealed greater peroxisome-derived ether lipids in the low AA/DHA group, primarily within the phosphatidylethanolamines. Our findings support a role for a low AA/DHA ratio in promoting FFM accrual and identify peroxisomal activity as a target of DHA in the growing infant. Both FFM abundance and peroxisomal activity may be important determinants of infant metabolism during development.


Asunto(s)
Lactancia Materna , Obesidad Infantil , Niño , Lactante , Femenino , Humanos , Ácidos Docosahexaenoicos , Fosfatidiletanolaminas/análisis , Leche Humana/química , Ácidos Grasos , Fosfolípidos , Eritrocitos , Éteres/análisis
4.
PLoS One ; 16(9): e0255660, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34555059

RESUMEN

Nicrophorus is a genus of beetles that bury and transform small vertebrate carcasses into a brood ball coated with their oral and anal secretions to prevent decay and that will serve as a food source for their young. Nicrophorus pustulatus is an unusual species with the ability to overtake brood of other burying beetles and whose secretions, unlike other Nicrophorus species, has been reported not to exhibit antimicrobial properties. This work aims to better understand how the presence or absence of a food source influences the expression of genes involved in the feeding process of N. pustulatus. To achieve that, total RNA was extracted from pooled samples of salivary gland tissue from N. pustulatus and sequenced using an Illumina platform. The resulting reads were used to assemble a de novo transcriptome using Trinity. Duplicates with more than 95% similarity were removed to obtain a "unigene" set. Annotation of the unigene set was done using the Trinotate pipeline. Transcript abundance was determined using Kallisto and differential gene expression analysis was performed using edgeR. A total of 651 genes were found to be differentially expressed, including 390 upregulated and 261 downregulated genes in fed insects compared to starved. Several genes upregulated in fed beetles are associated with the insect immune response and detoxification processes with only one transcript encoding for the antimicrobial peptide (AMP) defensin. These results confirm that N. pustulatus does not upregulate the production of genes encoding AMPs during feeding. This study provides a snapshot of the changes in gene expression in the salivary glands of N. pustulatus following feeding while providing a well described transcriptome for the further analysis of this unique burying beetle.


Asunto(s)
Escarabajos/genética , Conducta Alimentaria , Alimentos , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Glándulas Salivales/metabolismo , Transcriptoma , Animales , Secreciones Corporales , Escarabajos/crecimiento & desarrollo , Proteínas de Insectos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA