Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
RSC Adv ; 14(19): 13168-13179, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38655471

RESUMEN

The present study describes the development of a simple and selective analytical method for dispersive micro solid phase extraction and determination of glibenclamide (GLB) using magnetic molecularly imprinted polymer (MMIP) as a sorbent. MMIP was fabricated by the non-covalent method on the surface of silicated Fe3O4 and had a high affinity for glibenclamide; dual monomers, itaconic acid and allylamine, were used for this. Polymerization was achieved by the precipitation method in the presence of glibenclamide as the template and ethylene glycol dimethacrylate as the cross-linker. The morphology and structural properties of the MMIP were characterized by different analytical methods. To achieve maximum extraction efficiency, influencing parameters were optimized. The linearity range was 1-2000 and 12-2000 µg L-1 by high-performance liquid chromatography-photodiode array detector (HPLC-PDA) and UV-vis spectroscopy, respectively. The detection and quantification limits with UV-vis and HPLC-PDA analyses were 4 and 12 µg L-1 and 0.3 and 1 µg L-1, respectively. Under optimized conditions, recovery of glibenclamide spiked in plasma, human urine, and wastewater was between 89.4 and 102.9% at the concentration levels of 25, 250, and 500 µg L-1; relative standard deviations were below 3.7% by HPLC-PDA. The developed method has a favorable pre-concentration factor of 140.0. Equilibrium data and sorption isotherms fitted well with the Langmuir model. A maximum sorption capacity of 24.260 mg g-1 was acquired based on the Langmuir model. The synthesized sorbent with high selectivity was used to separate GLB from complex biological systems and wastewater before measurement with UV-vis or HPLC-PDA.

2.
J Environ Manage ; 350: 119545, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995482

RESUMEN

A novel octahedral distorted coordination complex was formed from a copper transition metal with a bidentate ligand (1,10-Phenanthroline) and characterized by Ultraviolet-visible spectroscopy, Ultraviolet-visible diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller, Field emission scanning electron microscopy, and Single-crystal X-ray diffraction. The Hirshfeld surface and fingerprint plot analyses were conducted to determine the interactions between atoms in the Cu(II) complex. DFT calculations showed that the central copper ion and its coordinated atoms have an octahedral geometry. The Molecular electrostatic potential (MEP) map indicated that the copper (II) complex is an electrophilic compound that can interact with negatively charged macromolecules. The HOMO-LUMO analysis demonstrated the π nature charge transfer from acetate to phenanthroline. The band gap of [Cu(phen)2(OAc)]·PF6 photocatalyst was estimated to be 2.88 eV, confirming that this complex is suitable for environmental remediation. The photocatalytic degradation of erythrosine, malachite green, methylene blue, and Eriochrome Black T as model organic pollutants using the prepared complex was investigated under visible light. The [Cu(phen)2(OAc)]·PF6 photocatalyst exhibited degradation 94.7, 90.1, 82.7, and 74.3 % of malachite green, methylene blue, erythrosine, and Eriochrome Black T, respectively, under visible illumination within 70 min. The results from the Langmuir-Hinshelwood kinetic analysis demonstrated that the Cu(II) complex has a higher efficiency for the degradation of cationic pollutants than the anionic ones. This was attributed to surface charge attraction between photocatalyst and cationic dyes promoting removal efficiency. The reusability test indicated that the photocatalyst could be utilized in seven consecutive photocatalytic degradation cycles with an insignificant decrease in efficiency.


Asunto(s)
Cobre , Contaminantes Ambientales , Cobre/química , Azul de Metileno/química , Cinética , Eritrosina , Luz , Colorantes/química , Catálisis
3.
Mikrochim Acta ; 190(4): 164, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991233

RESUMEN

A magnetic molecularly imprinted polymer (MMIP) was fabricated for captopril by surface polymerization of Fe3O4@SiO2 nanoparticles using a new functional monomer of N-(allylcarbamothioyl)-2-chlorobenzamide. It was then employed as a selective nanosorbent for dispersive magnetic micro solid phase extraction (DM-µ-SPE) of captopril from biological and wastewater samples. To characterize the physicochemical properties of the MMIP, different analytical methods such as the vibrating sample magnetometer, field emission scanning electron microscopy, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopy were utilized. To gain the maximum extraction recovery of captopril, the influence of various operating conditions was investigated and experimental settings optimized. After the extraction step, the concentration of captopril was measured by UV-Vis spectrophotometer at 245 nm. The assessments demonstrated that the MMIP provides higher extraction efficiency in comparison to magnetic non-imprinted polymer, suggesting the establishment of selective recognition binding sites at the MMIP surface. The method depicted desirable figures of merit of a low detection limit of 0.16 µg L-1, a limit of quantification of 0.50 µg L-1, a linear dynamic range of 0.50-22.0 µg L-1, and an acceptable preconcentration factor of 333. The magnetic MIP was successfully employed for preconcentration and extraction of trace amounts of captopril in real samples, such as human blood serum, urine, and wastewater samples, with recoveries in the range 95.7 to 102.6% and relative standard deviations < 5%.


Asunto(s)
Captopril , Aguas Residuales , Humanos , Polímeros/química , Dióxido de Silicio , Extracción en Fase Sólida/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Fenómenos Magnéticos
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122656, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36996521

RESUMEN

A magnetic molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization utilizing Fe3O4@SiO2-MPS as a magnetic core, itaconic acid as a functional monomer, azobisisobutyronitrile as an initiator, and ethylene glycol dimethacrylate as a cross linker. It was then applied as a nanosorbent for dispersive magnetic micro solid phase extraction (DM-µ-SPE) and determination of valsartan in biological fluids. The morphology and structure of magnetic MIP were characterized by Fourier-transform infrared spectroscopy, Field Emission Scanning electron microscopy, Vibrating sample magnetometer, Energy dispersive x-ray analysis, and Thermogravimetric analysis. The influence of operation conditions on sorption, such as pH (4-10), contact time (10-25 min), initial concentration (1-30 mg L-1), and temperature (25-40 °C) was investigated. After the extraction step, the valsartan concentration was determined by UV-Vis spectrophotometer at 253 nm. The isotherm and kinetic of valsartan sorption were best fitted by the Langmuir model (R2 = 0.987) and the Pseudo second-order kinetic model (R2 = 0.971), respectively. The maximum monolayer sorption capacity for magnetic MIP was obtained to be 4.56 mg g-1. The analytical approach demonstrated favorable figures of merit, with a linear dynamic range of 10-100 µg L-1, a low detection limit of 0.56 µg L-1, and an acceptable preconcentration factor of 5 acquired in optimum conditions. The recoveries of the suggested technique at three spiked levels of analysis were in the range of 101 %-102 %. Valsartan was extracted from various real samples (urine and human blood plasma samples) utilizing the proposed magnetic nanosorbent, and the results exhibited that magnetic MIP was favorable for extraction and measurement of trace amounts of valsartan in biological samples.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Humanos , Dióxido de Silicio/química , Cinética , Valsartán , Polímeros/química , Extracción en Fase Sólida/métodos , Espectrofotometría , Termodinámica , Fenómenos Magnéticos , Impresión Molecular/métodos , Adsorción , Cromatografía Líquida de Alta Presión
5.
Environ Res ; 222: 115321, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696944

RESUMEN

The first ultrasonic synthesis of [Cu(L)4(SCN)2] (L = 1-methylimidazole) nanocomplex was carried out under ultrasonic irradiation, and its photocatalytic performance for the degradation of remdesivir (RS) under sunlight irradiation was comprehensively investigated for the first time in this study. The physicochemical properties of the synthesized photocatalyst were examined by Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), diffuse reflectance spectroscopy (DRS), and thermogravimetric analysis (TGA) techniques. The band gap of the synthesized [Cu(L)4(SCN)2] nanocomplex was determined to be 2.60 eV by the diffuse reflectance spectroscopy method using Kubelka-Munk formula. The photocatalytic performance of nanocomplex was examined for the removal of remdesivir under sunlight from water for which the results indicated that an amount of 0.5 gL-1 of the [Cu(L)4(SCN)2] nanocomplex was sufficient to remove more than 96% remdesivir from its 2 mg L-1 concentration within 20 min, at pH = 6. The kinetic data showed that the photodegradation onto the [Cu(L)4(SCN)2] nanocomplex has a high correlation (0.98) with the pseudo-second-order kinetic model. The decrease in chemical oxygen demand (COD) (from 70.5 mg L-1 to 36.4 mg L-1) under optimal conditions clearly confirmed the mineralization of the RS drug. The values of ΔS° (-0.131 kJ mol-1 K-1) and ΔH° (-49.750 kJ mol-1) were negative, indicating that the adsorption process was spontaneous and more favorable in lower temperatures. Moreover, the RS structure in the open shell state and the high HOMO and LUMO gaps based on the M06/6-31 + G (d) level of theory may be a confirmation of this fact. In addition, the Hirshfeld surface analysis (HSA) of the crystal packing of the prepared complex was discussed in detail to evaluate the interactions between the crystal packings. The results of this study confirm that the [Cu(L)4(SCN)2] nanocomplex can be successfully used for the photodegradation of pharmaceutical contaminants.


Asunto(s)
Profármacos , Nucleótidos , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Catálisis
6.
J Hazard Mater ; 417: 126038, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015714

RESUMEN

In the present work, spherical carboxymethyl cellulose-cellulose-nickel (CMC-C-Ni) composite beads as novel adsorbent was synthesized to make a stable expanded bed adsorption (EBA) column for the treatment of the oily wastewater collected from the downstream of rapeseed industry. The morphology and structure of the CMC-C-Ni composite beads were studied by scanning electron microscopy (SEM) and optical microscope. The SEM images revealed that the synthesized composite beads were spherical with porous structure. The pore size of the beads was in the range of 90-200 nm. The physical characteristics of the CMC-C-Ni composite beads including wet density, porosity, and water content were respectively in the ranges of 1.23-1.63 g/cm3, 82.29-90.75%, and 52-76%. The factor of bed expansion in the range of 2-3 was corresponded with Richardson-Zaki equation. The results showed that by increasing the fluid viscosity, the terminal settling velocity (Ut) was reduced. The expansion index values were between 2.77 and 3.14 that were close to 4.8 (commonly utilized index in the laminar flow regimes). CMC-C-Ni composite beads were tested when the velocity of fluid was ˂ 700 cm/h, and the Daxl was found to be ˂ 1 × 10-5 m2/s (steady state).


Asunto(s)
Níquel , Aguas Residuales , Adsorción , Carboximetilcelulosa de Sodio , Porosidad
7.
Int J Biol Macromol ; 152: 913-921, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32092426

RESUMEN

In this study, the starch-capped zinc selenide nanoparticles loaded on activated carbon (ST-Zn-Se-NPs-AC) composite was fabricated, and then it was used for removing Basic Fuchsin (BF) dye from aqueous solution. The ST-Zn-Se-NPs-AC composite was characterized by FE-SEM, UV-Vis, EDS, and XRD techniques. The removal percentage dependence to different variables such as initial BF concentration, pH, dosage of adsorbent, and time of sonication was investigated by Central Composite Design (CCD) under Response Surface Methodology (RSM). The quadratic model between the independent and dependent variables was predicted. A good agreement between the experimental and predicted data was achieved by the predicted model that showed the performance of the predicted model for predicting of real optimum points, and it was successfully employed to remove BF from aqueous media. The maximum removal percentage of 99.34% was obtained by the predicted model under the optimum conditions (15 mg L-1 of initial BF concentration, pH of 7.0, 12 mg of ST-Zn-Se-NPs-AC, and 6 min of sonication time), which was very close to the experimental value (99.00%). Moreover, the data were efficiently fitted by Langmuir model, and the saturation adsorption capacity (Qmax) at 25 °C for BF was discovered to be 222.72 mg g-1.


Asunto(s)
Carbón Orgánico/química , Modelos Químicos , Nanocompuestos/química , Nanopartículas/química , Compuestos de Selenio/química , Almidón/química , Ondas Ultrasónicas , Compuestos de Zinc/química , Adsorción , Cinética
8.
Ultrason Sonochem ; 58: 104616, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31450305

RESUMEN

An environmentally friendly one-pot synthesis approach for the decoration of Pd-Ag nanoparticles with the ultrasmall size on graphene (Pd-Ag/G) by the assistance of ultrasound is proposed in this paper. This method offers exceptional advantages over other approaches such as environmentally friendly synthesis, being low temperature, reductant, surfactant free, simple, fast and one-pot synthesis. In this work, silver formate is added to the graphene suspension at 25 °C. Then, PdCl2 is added to the suspension under stirring to fabricate Pd-Ag/G. The uniform dispersity of nanoparticles with an average size of about 2-3 nm is well confirmed by transmission electron microscopy micrographs. The resultant catalyst is applied as anode electrocatalyst towards electrooxidation reaction of ethanol. The Pd-Ag/G catalyst displays exceptional catalytic activity and durability towards electro-oxidation of ethanol. According to the obtained results, it be concluded that the combination of Ag and Pd, ultrasmall and uniform distribution of Pd-Ag nanoparticles led to the improvement of electrocatalytic activity of the Pd-Ag/G catalyst.

9.
Ultrason Sonochem ; 51: 478-486, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30219352

RESUMEN

In this paper, a fast and effective method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. A multifunctional catalyst with the mentioned nanostructure, Pd@CuNWs, and multi walled carbon nanotubes (MWCNTs) and chitosan (CH) as a binder was fabricated. To investigate the morphology and bulk composition of the prepared catalyst, Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), and Inductively Coupled Plasma atomic Emission Spectroscopy (ICP-AES) were utilized. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were employed for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Electrochemical catalytic activity and durability evaluation results proved that the as-synthesized Pd@CuNWs/MWCNTs-CH has a super electrocatalytic activity compared to Pd/MWCNTs and Pd/C electrocatalysts for ethanol electrooxidation. Pd@CuNWs/MWCNTs-CH catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to Pd/MWCNTs and commercial Pd/C demonstrated the potential in utilizing Pd@CuNWs/MWCNTs-CH as an efficient catalyst for ethanol oxidation. Additionally, thermodynamic and kinetic evaluations revealed that the Pd@CuNWs/MWCNTs-CH catalyst has lower activation energy compared to Pd/MWCNTs and Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation. Noticeably, the Pd@CuNWs/MWCNTs-CH presented excellent catalytic activities with high peak current density which was 9.5 times more than Pd/C, and more negative onset potential in comparison to Pd/C is acquired for ethanol electrooxidation denoting synergistic effect between CuNWs/MWCNs-CH and Pd. The Pd@CuNWs/MWCNTs-CH can be considered as a valid candidate among available electrocatalysts in direct ethanol fuel cells (DEFCs).

10.
Ultrason Sonochem ; 49: 1-12, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30082252

RESUMEN

In this research, the poly (acrylamide-co-itaconic acid)/multi-walled carbon nanotubes (P(AAm-co-IA)/MWCNTs) as a novel superabsorbent hydrogel nanocomposite was synthesized by graft copolymerization of acrylamide (AAm) and itaconic acid (IA) mixture in the presence of the MWCNTs using ammonium persulfate (APS) as a free radical initiator and methylenebisacrylamide (MBA) as a crosslinker under ultrasound-assisted condition. The blank P(AAm-co-IA) hydrogel and its composite with the MWCNTs were characterized by means of SEM, FTIR, XRD and TGA methods. The effects of different parameters such as pH, time, the MWCNTs content and salt solutions on swelling behavior were investigated. The stability of the hydrogel increased by any increase in the MWCNTs content, which might be attributed to the hydrophobic nature of the MWCNTs as well as the increase of the crosslinker density. The water retention capacity (WRC) of the P(AAm-co-IA) hydrogel increased in the presence of the MWCNT (10 wt%). The synthesized hydrogel nanocomposite was studied for Pb (II) adsorption from aqueous solution. The effects of different parameters such as contact time (5-90 min), Pb (II) initial concentration (25-175 mg/L) and initial pH (1.5-4.5) of solution on Pb (II) adsorption were investigated by batch method. In comparison to P(AAm-co-IA) hydrogel, the P(AAm-co-IA)/MWCNTs hydrogel nanocompoite showed better adsorption behavior toward Pb (II). One of the most important aspects of this research was to investigate the effects of ultrasonic waves on polymer matrix and its ability.

11.
Ultrason Sonochem ; 44: 129-136, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29680594

RESUMEN

In this research, a novel Sn(II)-imprinted poly(dimethyl vinylphosphonate) nanopowder (Sn(II)-IPDMVPN) was prepared using Sn2+, dimethyl vinylphosphonate, azobis isobutyronitril and ethylene glycol dimethacrylate as the template, ligand, initiator and cross linker, respectively. The non-imprinted poly(dimethyl vinylphosphonate) nanopowder (NIPDMVPN) was also synthesized utilizing the same procedure without using SnCl2·2H2O in order to compare the results with the Sn(II)-IPDMVPN. The structure, morphology and composition of the products were characterized by XRD, SEM, EDX, XRF, BET, FT-IR and NMR techniques. Some experimental conditions including pH, eluent concentration and sample volume were optimized to maximize Sn(II) adsorption by the Sn(II)-IPDMVPN. It was found that the optimum conditions are pH = 5, 1.00 M of HNO3 as eluent and sample volume up to 50 mL. The results obtained by ICP-MS indicated that the Sn(II)-IPDMVPN had much higher adsorption capacity for Sn(II) ions (about threefold) than the NIPDMVPN. The applicability of the Sn(II)-IPDMVPN was also investigated in three different real samples. Under the best experimental conditions, the calibration graphs were linear in the range of 0.19-90 µg L-1 with a coefficient of determination (R2) of 0.990. The detection limit was calculated to be 0.06 µg L-1. The relative standard deviation (RSD) for six replicate measurements of Sn(II) at 1.00 ng mL-1 was determined to be 1.8%. The results showed that the Sn(II)-IPDMVPN-ICP-MS is a very simple, rapid, sensitive and efficient method for the determination of Sn(II) ions in water samples.

12.
RSC Adv ; 8(42): 23539-23545, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35540256

RESUMEN

New self-assembled architectures have received great interest in nanotechnology, and are a highly desired target in recent studies. Among self-assembled architectures, noble metal aerogels are an important class owing to their collective characters as well as widespread applications. The synthesis of noble metal aerogels still faces several obstacles such as long hydrogel creation time and complicated multistep strategies. In this paper, we propose an efficient and useful approach to create the three-dimensional network of a Pd-Cu aerogel. This way offers a number of advantages including one-pot synthesis, simplicity, and short time to prepare the hydrogel. The Pd-Cu aerogel was prepared by the reduction of H2PdCl4 and CuCl2 in the presence of sodium carbonate by using glyoxylic acid monohydrate as a reducing agent followed by supercritical CO2 drying. The Pd-Cu aerogel was applied as an anode catalyst for electrooxidation process of formic acid, and depicts much higher electrocatalytic activity and durability compared to the Pd/C. We believe that the exceptional three-dimensional nanostructures fabricated by this route are powerful and promising catalysts for application in direct formic acid fuel cells (DFAFCs), which may open great opportunities for widespread applications such as catalysis, sensors, optoelectronics, electrochemical energy systems, etc.

13.
Mini Rev Med Chem ; 14(2): 208-13, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24387708

RESUMEN

Glibenclamide (5-chloro-N-(4-[N-(cyclohexylcarbamoyl) sulfamoyl] phenethyl)-2-methoxybenzamide, Glyburide, E) is a well-known and potent second-generation of sulfonylurea oral hypoglycemic drug which is most widely used in type 2 diabetes recently. It acts upon pancreatic ß-cells by stimulating insulin secretion in glucose and lipid-lowering activities. So far, many derivatives of E have been synthesized by adding new structural moieties to its structure while preserving its binding affinity to the receptor before their anti-hyperglycemic and anti hyperlipidemic activities being evaluated. In this study, new analogues of E after changing lipophilic side chain (5-chloro-2-methoxy benzamide) with 4- bromo-3, 5-dimethoxy benzamide and 2, 4-dichloro benzamide were synthesized. Also, their glucose and lipid-lowering activities were evaluated and compared to E and Tolbutamide (a famous first-generation of sulfonylurea oral hypoglycemic drug) by the known procedures. Findings showed that chloride substitution on lipophilic side chain of Glibenclamide could possibly increase the affinity of drug for receptor/or its half life time that resulted in more lasting anti-hyperglycemic and anti lipidemic activities in diabetic rats. However, bromide substitution with additional methoxy groups in benzamide ring could slightly improve the anti-hyperglycemic potency of the new drug compared to the root drug (E).


Asunto(s)
Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Gliburida/farmacología , Hipoglucemiantes/farmacología , Hipolipemiantes/farmacología , Animales , Gliburida/síntesis química , Gliburida/química , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Hipolipemiantes/síntesis química , Hipolipemiantes/química , Masculino , Estructura Molecular , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA