Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 14(1): 18635, 2024 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128921

RESUMEN

Evolution of unisexual flowers involves extreme changes in floral development. Spinach is one of the species to discern the formation and evolution of dioecy. MADS-box gene family is involved in regulation of floral organ identity and development and in many other plant developmental processes. However, there is no systematic analysis of MADS-box family genes in spinach. A comprehensive genome-wide analysis and transcriptome profiling of MADS-box genes were undertaken to understand their involvement in unisexual flower development at different stages in spinach. In total, 54 MADS-box genes found to be unevenly located across 6 chromosomes and can be divided into type I and type II genes. Twenty type I MADS-box genes are subdivided into Mα, Mß and Mγ subgroups. While thirty-four type II SoMADSs consist of 3 MIKC*, and 31 MIKCC -type genes including sixteen floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in spinach. Gene structure, motif distribution, physiochemical properties, gene duplication and collinearity analyses for these genes are performed in detail. Promoters of both types of SoMADS genes contain mainly MeJA and ABA response elements. Expression profiling indicated that MIKCc genes exhibited more dynamic and intricate expression patterns compared to M-type genes and the majority of type-II genes AP1, SVP, and SOC1 sub-groups showed female flower-biased expression profiles, suggesting their role in carpel development, while PI showed male-biased expression throughout flower developmental stages, suggesting their role in stamen development. These results provide genomic resources and insights into spinach dioecious flower development and expedite spinach improvement.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Spinacia oleracea , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Spinacia oleracea/genética , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Estudio de Asociación del Genoma Completo , Duplicación de Gen
2.
BMC Plant Biol ; 23(1): 52, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694139

RESUMEN

BACKGROUND: Diseases are the major factor affecting the quality and yield of sugarcane during its growth and development. However, our knowledge about the factors regulating disease responses remain limited. The present study focuses on identifying genes regulating transcriptional mechanisms responsible for resistance to leaf scald caused by Xanthomonas albilineans in S. spontaneum and S. officinarum. RESULTS: After inoculation of the two sugarcane varieties SES208 (S. spontaneum) and LA Purple (S. officinarum) with Xanthomonas albilineans, SES208 exhibited significantly greater resistance to leaf scald caused by X. albilineans than did LA Purple. Using transcriptome analysis, we identified a total of 4323 and 1755 differentially expressed genes (DEGs) in inoculated samples of SES208 and LA Purple, respectively. Significantly, 262 DEGs were specifically identified in SES208 that were enriched for KEGG pathway terms such as plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Furthermore, we built a transcriptional regulatory co-expression network that specifically identified 16 and 25 hub genes in SES208 that were enriched for putative functions in plant-pathogen interactions, MAPK signaling, and plant hormone signal transduction. All of these essential genes might be significantly involved in resistance-regulating responses in SES208 after X. albilineans inoculation. In addition, we found allele-specific expression in SES208 that was associated with the resistance phenotype of SES208 when infected by X. albilineans. After infection with X. albilineans, a great number of DEGs associated with the KEGG pathways 'phenylpropanoid biosynthesis' and 'flavonoid biosynthesis' exhibited significant expression changes in SES208 compared to LA Purple that might contribute to superior leaf scald resistance in SES208. CONCLUSIONS: We provided the first systematical transcriptome map that the higher resistance of SES208 is associated with and elicited by the rapid activation of multiple clusters of defense response genes after infection by X. albilineans and not merely due to changes in the expression of genes generically associated with stress resistance. These results will serve as the foundation for further understanding of the molecular mechanisms of resistance against X. albilineans in S. spontaneum.


Asunto(s)
Saccharum , Xanthomonas , Saccharum/genética , Xanthomonas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Enfermedades de las Plantas/genética
3.
Front Plant Sci ; 13: 994679, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247544

RESUMEN

Orchidaceae, with more than 25,000 species, is one of the largest flowering plant families that can successfully colonize wide ecological niches, such as land, trees, or rocks, and its members are divided into epiphytic, terrestrial, and saprophytic types according to their life forms. Cellulose synthase (CesA) and cellulose synthase-like (Csl) genes are key regulators in the synthesis of plant cell wall polysaccharides, which play an important role in the adaptation of orchids to resist abiotic stresses, such as drought and cold. In this study, nine whole-genome sequenced orchid species with three types of life forms were selected; the CesA/Csl gene family was identified; the evolutionary roles and expression patterns of CesA/Csl genes adapted to different life forms and abiotic stresses were investigated. The CesA/Csl genes of nine orchid species were divided into eight subfamilies: CesA and CslA/B/C/D/E/G/H, among which the CslD subfamily had the highest number of genes, followed by CesA, whereas CslB subfamily had the least number of genes. Expansion of the CesA/Csl gene family in orchids mainly occurred in the CslD and CslF subfamilies. Conserved domain analysis revealed that eight subfamilies were conserved with variations in orchids. In total, 17 pairs of CesA/Csl homologous genes underwent positive selection, of which 86%, 14%, and none belonged to the epiphytic, terrestrial, and saprophytic orchids, respectively. The inter-species collinearity analysis showed that the CslD genes expanded in epiphytic orchids. Compared with terrestrial and saprophytic orchids, epiphytic orchids experienced greater strength of positive selection, with expansion events mostly related to the CslD subfamily, which might have resulted in strong adaptability to stress in epiphytes. Experiments on stem expression changes under abiotic stress showed that the CslA might be a key subfamily in response to drought stress for orchids with different life forms, whereas the CslD might be a key subfamily in epiphytic and saprophytic orchids to adapt to freezing stress. This study provides the basic knowledge for the further systematic study of the adaptive evolution of the CesA/Csl superfamily in angiosperms with different life forms, and research on orchid-specific functional genes related to life-history trait evolution.

4.
Front Plant Sci ; 13: 839588, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812976

RESUMEN

Bio-based fuels have become popular being efficient, cost-effective, and eco-friendly alternatives to fossil fuels. Among plant sources exploited as feedstocks, C4 grasses, such as sugarcane, maize, sorghum, and miscanthus, are highly resourceful in converting solar energy into chemical energy. For a sustainable and reliable supply of feedstocks for biofuels, we expect dedicated bioenergy crops to produce high biomass using minimum input resources. In recent years, molecular and genetic advancements identified various factors regulating growth, biomass accumulation, and assimilate partitioning. Here, we reviewed important genes involved in cell cycle regulation, hormone dynamics, and cell wall biosynthesis. A number of important transcription factors and miRNAs aid in activation of important genes responsible for cell wall growth and re-construction. Also, environmental components interacting with genetic controls modulate plant biomass by modifying gene expression in multiple interacting pathways. Finally, we discussed recent progress using hybridization and genome editing techniques to improve biomass yield in C4 grasses. This review summarizes genes and environmental factors contributing biomass yield in C4 biofuel crops which can help to discover and design bioenergy crops adapting to changing climate conditions.

6.
Nat Genet ; 54(5): 715-724, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551309

RESUMEN

Transgenic papaya is widely publicized for controlling papaya ringspot virus. However, the impact of particle bombardment on the genome remains unknown. The transgenic SunUp and its progenitor Sunset genomes were assembled into 351.5 and 350.3 Mb in nine chromosomes, respectively. We identified a 1.64 Mb insertion containing three transgenic insertions in SunUp chromosome 5, consisting of 52 nuclear-plastid, 21 nuclear-mitochondrial and 1 nuclear genomic fragments. A 591.9 kb fragment in chromosome 5 was translocated into the 1.64 Mb insertion. We assembled a gapless 9.8 Mb hermaphrodite-specific region of the Yh chromosome and its 6.0 Mb X counterpart. Resequencing 86 genomes revealed three distinct groups, validating their geographic origin and breeding history. We identified 147 selective sweeps and defined the essential role of zeta-carotene desaturase in carotenoid accumulation during domestication. Our findings elucidated the impact of particle bombardment and improved our understanding of sex chromosomes and domestication to expedite papaya improvement.


Asunto(s)
Carica , Carica/genética , Cromosomas de las Plantas/genética , Domesticación , Fitomejoramiento , Cromosomas Sexuales
7.
Genome Biol ; 23(1): 75, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255946

RESUMEN

BACKGROUND: Spinach (Spinacia oleracea L.) is a dioecious species with an XY sex chromosome system, but its Y chromosome has not been fully characterized. Our knowledge about the history of its domestication and improvement remains limited. RESULTS: A high-quality YY genome of spinach is assembled into 952 Mb in six pseudo-chromosomes. By a combination of genetic mapping, Genome-Wide Association Studies, and genomic analysis, we characterize a 17.42-Mb sex determination region (SDR) on chromosome 1. The sex chromosomes of spinach evolved when an insertion containing sex determination genes occurred, followed by a large genomic inversion about 1.98 Mya. A subsequent burst of SDR-specific repeats (0.1-0.15 Mya) explains the large size of this SDR. We identify a Y-specific gene, NRT1/PTR 6.4 which resides in this insertion, as a strong candidate for the sex determination or differentiation factor. Resequencing of 112 spinach genomes reveals a severe domestication bottleneck approximately 10.87 Kya, which dates the domestication of spinach 7000 years earlier than the archeological record. We demonstrate that a strong selection signal associated with internode elongation and leaf area expansion is associated with domestication of edibility traits in spinach. We find that several strong genomic introgressions from the wild species Spinacia turkestanica and Spinacia tetrandra harbor desirable alleles of genes related to downy mildew resistance, frost resistance, leaf morphology, and flowering-time shift, which likely contribute to spinach improvement. CONCLUSIONS: Analysis of the YY genome uncovers evolutionary forces shaping nascent sex chromosome evolution in spinach. Our findings provide novel insights about the domestication and improvement of spinach.


Asunto(s)
Domesticación , Spinacia oleracea , Cromosomas de las Plantas/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Cromosomas Sexuales/genética , Spinacia oleracea/genética
8.
Front Plant Sci ; 13: 1010149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589106

RESUMEN

Reproductive growth is a bioenergetic process with high energy consumption. Pollination induces female flower longevity in spinach by accelerating sepal retention and development. Cellular bioenergetics involved in cellular growth is at the foundation of all developmental activities. By contrast, how pollination alter the sepal cells bioenergetics to support energy requirement and anabolic biomass accumulation for development is less well understood. To investigate pollination-induced energy-associated pathway changes in sepal tissues after pollination, we utilized RNA-sequencing to identify transcripts that were differentially expressed between unpollinated (UNP) and pollinated flower sepals at 12, 48, and 96HAP. In total, over 6756 non-redundant DEGs were identified followed by pairwise comparisons (i.e. UNP vs 12HAP, UNP vs 48HAP, and UNP vs 96HAP). KEGG enrichment showed that the central carbon metabolic pathway was significantly activated after pollination and governed by pivotal energy-associated regulation pathways such as glycolysis, the citric acid cycle, oxidative phosphorylation, photosynthesis, and pentose phosphate pathways. Co-expression networks confirmed the synergistically regulation interactions among these pathways. Gene expression changes in these pathways were not observed after fertilization at 12HAP, but started after fertilization at 48HAP, and significant changes in gene expression occurred at 96HAP when there is considerable sepal development. These results were also supported by qPCR validation. Our results suggest that multiple energy-associated pathways may play a pivotal regulatory role in post-pollination sepal longevity for developing the seed coat, and proposed an energy pathway model regulating sepal retention in spinach.

9.
Plants (Basel) ; 10(7)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34371574

RESUMEN

Mitogen-activated protein kinase (MAPK) cascades are the universal signal transduction networks that regulate cell growth and development, hormone signaling, and other environmental stresses. However, their essential contribution to plant tolerance is very little known in the potato (Solanum tuberosum) plant. The current study carried out a genome-wide study of StMAPK and provided a deep insight using bioinformatics tools. In addition, the relative expression of StMAPKs was also assessed in different plant tissues. The similarity search results identified a total of 22 StMAPK genes in the potato genome. The sequence alignment also showed conserved motif TEY/TDY in most StMAPKs with conserved docking LHDXXEP sites. The phylogenetic analysis divided all 22 StMAPK genes into five groups, i.e., A, B, C, D, and E, showing some common structural motifs. In addition, most of the StMAPKs were found in a cluster form at the terminal of chromosomes. The promoter analysis predicted several stress-responsive Cis-acting regulatory elements in StMAPK genes. Gene duplication under selection pressure also indicated several purifying and positive selections in StMAPK genes. In potato, StMAPK2, StMAPK6, and StMAPK19 showed a high expression in response to heat stress. Under ABA and IAA treatment, the expression of the total 20 StMAPK genes revealed that ABA and IAA played an essential role in this defense process. The expression profiling and real-time qPCR (RT-qPCR) exhibited their high expression in roots and stems compared to leaves. These results deliver primary data for functional analysis and provide reference data for other important crops.

10.
BMC Plant Biol ; 21(1): 166, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823793

RESUMEN

BACKGROUND: Pollination accelerate sepal development that enhances plant fitness by protecting seeds in female spinach. This response requires pollination signals that result in the remodeling within the sepal cells for retention and development, but the regulatory mechanism for this response is still unclear. To investigate the early pollination-induced metabolic changes in sepal, we utilize the high-throughput RNA-seq approach. RESULTS: Spinach variety 'Cornel 9' was used for differentially expressed gene analysis followed by experiments of auxin analog and auxin inhibitor treatments. We first compared the candidate transcripts expressed differentially at different time points (12H, 48H, and 96H) after pollination and detected significant difference in Trp-dependent auxin biosynthesis and auxin modulation and transduction process. Furthermore, several auxin regulatory pathways i.e. cell division, cell wall expansion, and biogenesis were activated from pollination to early developmental symptoms in sepals following pollination. To further confirm the role auxin genes play in the sepal development, auxin analog (2, 4-D; IAA) and auxin transport inhibitor (NPA) with different concentrations gradient were sprayed to the spinach unpollinated and pollinated flowers, respectively. NPA treatment resulted in auxin transport weakening that led to inhibition of sepal development at concentration 0.1 and 1 mM after pollination. 2, 4-D and IAA treatment to unpollinated flowers resulted in sepal development at lower concentration but wilting at higher concentration. CONCLUSION: We hypothesized that sepal retention and development might have associated with auxin homeostasis that regulates the sepal size by modulating associated pathways. These findings advanced the understanding of this unusual phenomenon of sepal growth instead of abscission after pollination in spinach.


Asunto(s)
Flores/crecimiento & desarrollo , Expresión Génica/fisiología , Ácidos Indolacéticos/administración & dosificación , Polinización , Spinacia oleracea/metabolismo , Flores/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , RNA-Seq , Spinacia oleracea/genética , Spinacia oleracea/crecimiento & desarrollo
11.
Front Plant Sci ; 12: 804600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126430

RESUMEN

The domain of the unknown function 221 proteins regulate several processes in plants, including development, growth, hormone transduction mechanism, and abiotic stress response. Therefore, a comprehensive analysis of the potato genome was conducted to identify the deafness-dystonia peptide (DDP) proteins' role in potatoes. In the present study, we performed a genome-wide analysis of the potato domain of the unknown function 221 (DUF221) genes, including phylogenetic inferences, chromosomal locations, gene duplications, gene structures, and expression analysis. In our results, we identified 10 DDP genes in the potato genome. The phylogenetic analysis results indicated that StDDPs genes were distributed in all four clades, and clade IV was the largest clade. The gene duplication under selection pressure analysis indicated various positive and purifying selections in StDDP genes. The putative stu-miRNAs from different families targeting StDDPs were also predicted in the present study. Promoter regions of StDDP genes contain different cis-acting components involved in multiple stress responses, such as phytohormones and abiotic stress-responsive factors. The analysis of the tissue-specific expression profiling indicated the StDDPs gene expression in stem, root, and leaf tissues. We subsequently observed that StDDP4, StDDP5, and StDDP8 showed higher expressions in roots, stems, and leaves. StDDP5 exhibited high expression against heat stress response, and StDDP7 showed high transcript abundance against salt stress in potatoes. Under abscisic acid (ABA) and indole acetic acid (IAA) treatments, seven StDDP genes' expressions indicated that ABA and IAA performed important roles in immunity response. The expression profiling and real-time qPCR of stems, roots, and leaves revealed StDDPs' significant role in growth and development. These expression results of DDPs are primary functional analysis and present basic information for other economically important crops.

12.
Front Plant Sci ; 12: 831140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35251067

RESUMEN

Germin and germin-like proteins (GLPs) perform a significant role in plants against biotic and abiotic stress. To understand the role of GLPs in potato, a comprehensive genome-wide analysis was performed in the potato genome. This study identified a total of 70 StGLPs genes in the potato genome, distributed among 11 chromosomes. Phylogenetic analysis exhibited that StGLPs were categorized into six groups with high bootstrap values. StGLPs gene structure and motifs analysis showed a relatively well-maintained intron-exon and motif formation within the cognate group. Additionally, several cis-elements in the promoter regions of GLPs were hormones, and stress-responsive and different families of miRNAs target StGLPs. Gene duplication under selection pressure also exhibited positive and purifying selections in StGLPs. In our results, the StGLP5 gene showed the highest expression in response to salt stress among all expressed StGLPs. Totally 19 StGLPs genes were expressed in response to heat stress. Moreover, three genes, StGLP30, StGLP17, and StGLP14, exhibited a relatively higher expression level in the potato after heat treatment. In total, 22 genes expressed in response to abscisic acid (ABA) treatment indicated that ABA performed an essential role in the plant defense or tolerance mechanism to environmental stress. RNA-Seq data validated by RT-qPCR also confirm that the StGLP5 gene showed maximum expression among selected genes under salt stress. Concisely, our results provide a platform for further functional exploration of the StGLPs against salt and heat stress conditions.

13.
Biochimie ; 180: 68-78, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33250447

RESUMEN

A valuable plant, Cyclobalanopsis gilva, (C. gilva) has a low germination rate (below 50%) under its natural habitations. In order to examine the reasons for the low germination rate, the seeds of C. gilva (germinated and non-germinated) were evaluated using comparative proteomics analysis. A total of 3078 differentially abundant proteins (DAPs) were identified through a label-free method; most DAPs up-accumulated in germinated seeds were related to carbohydrates metabolism. Furthermore the proteins related to the signals, stress, and protein metabolism showed up-accumulation in germinated and no abundance or down-accumulation in non-germinated seeds. Enzyme activity of HK, PGK, PFK, and PK from glycolysis in SG-Control samples were 1.7-, 1.1-, 1.4-, and 1.3-times higher compared with those in control ones while CS, NAD-MDH, α-KGDH, and ICDH from the TCA cycle in SG-Control samples were 3, 1.1, 1.2, and 1.2 times higher than those in NG-Control ones. The ß-amylase activity was 4-fold higher in successfully germinated seeds compared to non-germinated seeds. Interestingly, α-amylase did not show significant changes in protein abundance and enzyme activity among the three samples. The present findings reveal that unsuccessful germination of C. gilva seeds is due to lack of energy.


Asunto(s)
Germinación/fisiología , Quercus/fisiología , Semillas/fisiología , Metabolismo de los Hidratos de Carbono/genética , Biología Computacional , Metabolismo Energético/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Proteómica , Almidón/análisis , Azúcares/análisis , alfa-Amilasas/metabolismo , beta-Amilasa/metabolismo
14.
Sci Rep ; 10(1): 20536, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239664

RESUMEN

Sugarcane is the most important sugar and biofuel crop. MADS-box genes encode transcription factors that are involved in developmental control and signal transduction in plants. Systematic analyses of MADS-box genes have been reported in many plant species, but its identification and characterization were not possible until a reference genome of autotetraploid wild type sugarcane specie, Saccharum spontaneum is available recently. We identified 182 MADS-box sequences in the S. spontaneum genome, which were annotated into 63 genes, including 6 (9.5%) genes with four alleles, 21 (33.3%) with three, 29 (46%) with two, 7 (11.1%) with one allele. Paralogs (tandem duplication and disperse duplicated) were also identified and characterized. These MADS-box genes were divided into two groups; Type-I (21 Mα, 4 Mß, 4 Mγ) and Type-II (32 MIKCc, 2 MIKC*) through phylogenetic analysis with orthologs in Arabidopsis and sorghum. Structural diversity and distribution of motifs were studied in detail. Chromosomal localizations revealed that S. spontaneum MADS-box genes were randomly distributed across eight homologous chromosome groups. The expression profiles of these MADS-box genes were analyzed in leaves, roots, stem sections and after hormones treatment. Important alleles based on promoter analysis and expression variations were dissected. qRT-PCR analysis was performed to verify the expression pattern of pivotal S. spontaneum MADS-box genes and suggested that flower timing genes (SOC1 and SVP) may regulate vegetative development.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Tallos de la Planta/genética , Saccharum/crecimiento & desarrollo , Saccharum/genética , Alelos , Cromosomas de las Plantas/genética , Secuencia Conservada/genética , Exones/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Intrones/genética , Proteínas de Dominio MADS/metabolismo , Modelos Genéticos , Motivos de Nucleótidos/genética , Especificidad de Órganos/genética , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Tallos de la Planta/efectos de los fármacos , Sorghum/genética , Fracciones Subcelulares/metabolismo
15.
Hortic Res ; 7(1): 81, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528693

RESUMEN

Separate sexes in dioecious plants display different morphology and physiological characteristics. The differences between the two sexes lie in their highly differentiated floral characteristics and in sex-related phenotype, which is genetically determined and epigenetically modified. In dioecious papaya (Carica papaya L.), global comparisons of epigenetic DNA methylation and gene expressions were still limited. We conducted bisulfite sequencing of early-stage flowers grown in three seasons (spring, summer and winter) and compared their methylome and transcriptome profiles to investigate the differential characteristics of male and female in papaya. Methylation variances between female and male papaya were conserved among three different seasons. However, combined genome-scale transcriptomic evidence revealed that most methylation variances did not have influence on the expression profiles of neighboring genes, and the differentially expressed genes were most overrepresented in phytohormone signal transduction pathways. Further analyses showed diverse stress-responsive methylation alteration in male and female flowers. Male flower methylation was more responsive to stress whereas female flower methylation varied less under stress. Early flowering of male papaya in spring might be associated with the variation in the transcription of CpSVP and CpAP1 coinciding with their gene-specific hypomethylation. These findings provide insights into the sex-specific DNA methylation and gene expression landscapes of dioecious papaya and a foundation to investigate the correlation between differentiated floral characteristics and their candidate genes.

16.
Microb Pathog ; 141: 103996, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31988004

RESUMEN

Different types of molecular approaches have been used for improving resistance against pathogens to secure food. Efficient and advanced genome editing tool as paralleled to earlier techniques like Zinc Finger Nuclease (ZFN), transcription activator-like effector nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). The approach of CRISPR/Cas9 has updated our abilities of genetic manipulation in many crops. The assembly of purposes that can be achieved through CRISPR/Cas9 and its related products make it a powerful system that will expose novel prospects in the complex domain of plant-pathogen interactions and will help to develop crop resistance against pathogens. CRISPR/Cas9 engineering permits DNA endonuclease guided by an RNA for a range of genome engineering applications across various eukaryotic species and provides an effective platform to create resistance against bacteria, viruses, insects, and fungi. In this review, we discuss CRISPR-Cas9 engineered crop plants resistant to specific pathogens.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Edición Génica/métodos , Infecciones Bacterianas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Productos Agrícolas/genética , Micosis , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente , Virosis
17.
BMC Genomics ; 21(1): 8, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896347

RESUMEN

BACKGROUND: Pineapple is the most important crop with CAM photosynthesis, but its molecular biology is underexplored. MADS-box genes are crucial transcription factors involving in plant development and several biological processes. However, there is no systematic analysis of MADS-box family genes in pineapple (Ananas comosus). RESULTS: Forty-eight MADS-box genes were identified in the pineapple genome. Based on the phylogenetic studies, pineapple MADS-box genes can be divided into type I and type II MADS-box genes. Thirty-four pineapple genes were classified as type II MADS-box genes including 32 MIKC-type and 2 Mδ-type, while 14 type I MADS-box genes were further divided into Mα, Mß and Mγ subgroups. A majority of pineapple MADS-box genes were randomly distributed across 19 chromosomes. RNA-seq expression patterns of MADS-box genes in four different tissues revealed that more genes were highly expressed in flowers, which was confirmed by our quantitative RT-PCR results. There is no FLC and CO orthologs in pineapple. The loss of FLC and CO orthologs in pineapple indicated that modified flowering genes network in this tropical plant compared with Arabidopsis. The expression patterns of MADS-box genes in photosynthetic and non-photosynthetic leaf tissues indicated the potential roles of some MADS-box genes in pineapple CAM photosynthesis. The 23% of pineapple MADS-box genes showed diurnal rhythm, indicating that these MADS-box genes are regulated by circadian clock. CONCLUSIONS: MADS-box genes identified in pineapple are closely related to flowering development. Some MADS-box genes are involved in CAM photosynthesis and regulated by the circadian clock. These findings will facilitate research on the development of unusual spiral inflorescences on pineapple fruit and CAM photosynthesis.


Asunto(s)
Ananas/genética , Flores/genética , Proteínas de Dominio MADS/genética , Fotosíntesis/genética , Ananas/crecimiento & desarrollo , Arabidopsis/genética , Secuencia Conservada/genética , Evolución Molecular , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Familia de Multigenes/genética , Filogenia , Desarrollo de la Planta/genética
18.
Hortic Res ; 6: 119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31700646

RESUMEN

The morphogenesis of gynoecium is crucial for propagation and productivity of fruit crops. For trioecious papaya (Carica papaya), highly differentiated morphology of gynoecium in flowers of different sex types is controlled by gene networks and influenced by environmental factors, but the regulatory mechanism in gynoecium morphogenesis is unclear. Gynodioecious and dioecious papaya varieties were used for analysis of differentially expressed genes followed by experiments using auxin and an auxin transporter inhibitor. We first compared differential gene expression in functional and rudimentary gynoecium at early stage of their development and detected significant difference in phytohormone modulating and transduction processes, particularly auxin. Enhanced auxin signal transduction in rudimentary gynoecium was observed. To determine the role auxin plays in the papaya gynoecium, auxin transport inhibitor (N-1-Naphthylphthalamic acid, NPA) and synthetic auxin analogs with different concentrations gradient were sprayed to the trunk apex of male and female plants of dioecious papaya. Weakening of auxin transport by 10 mg/L NPA treatment resulted in female fertility restoration in male flowers, while female flowers did not show changes. NPA treatment with higher concentration (30 and 50 mg/L) caused deformed flowers in both male and female plants. We hypothesize that the occurrence of rudimentary gynoecium patterning might associate with auxin homeostasis alteration. Proper auxin concentration and auxin homeostasis might be crucial for functional gynoecium morphogenesis in papaya flowers. These results will lead to further investigation on the auxin homeostasis and gynoecium morphogenesis in papaya.

19.
Nat Genet ; 51(10): 1549-1558, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31570895

RESUMEN

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a 'one-step operation'. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513 Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars 'Smooth Cayenne' and 'Queen' exhibited ancient and recent admixture, while 'Singapore Spanish' supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.


Asunto(s)
Ananas/genética , Productos Agrícolas/genética , Domesticación , Genoma de Planta , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Carácter Cuantitativo Heredable , Ananas/crecimiento & desarrollo , Bromelaínas/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Dinámica Poblacional , Azúcares/metabolismo
20.
Microb Pathog ; 137: 103728, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31499183

RESUMEN

Plants under natural environment facing various pathogens, tend to produce defense to maintain their fitness and minimize pathogenic damage. Plant-pathogens interaction is gaining more importance by researches as, their means of the fight are primary metabolites. The ultimate result of either means of defense is pathogenesis or resistance. Plant defense mechanisms can be grouped either into inducible and constitutive defense or chemical, structural and morphological defense. Majority of defense mechanisms have a passive role, i.e. only defensive against pathogens, but a few are very active. Plant primary metabolites are catching interest in their immunity role. Deep information of molecular mechanisms involved during the plant-pathogen system is need of the day for future disease control. This review will highlight the role of primary metabolites and their mechanism of action in plant defense.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Plantas/inmunología , Plantas/metabolismo , Animales , Bacterias , Resistencia a la Enfermedad/fisiología , Hongos , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/fisiología , Insectos , Enfermedades de las Plantas/inmunología , Proteínas de Plantas , Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA