Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 29(4): 559-577, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37187776

RESUMEN

Climate change increases precipitation variability, particularly in savanna environments. We have used integrative strategies to understand the molecular mechanisms of drought tolerance, which will be crucial for developing improved genotypes. The current study compares the molecular and physiological parameters between the drought-tolerant Embrapa 48 and the sensitive BR16 genotypes. We integrated the root-shoot system's transcriptome, proteome, and metabolome to understand drought tolerance. The results indicated that Embrapa 48 had a greater capacity for water absorption due to alterations in length and volume. Drought tolerance appears to be ABA-independent, and IAA levels in the leaves partially explain the higher root growth. Proteomic profiles revealed up-regulated proteins involved in glutamine biosynthesis and proteolysis, suggesting osmoprotection and explaining the larger root volume. Dysregulated proteins in the roots belong to the phenylpropanoid pathways. Additionally, PR-like proteins involved in the biosynthesis of phenolics may act to prevent oxidative stress and as a substrate for modifying cell walls. Thus, we concluded that alterations in the root-shoot conductive vessel system are critical in promoting drought tolerance. Moreover, photosynthetic parameters from reciprocal grafting experiments indicated that the root system is more essential than the shoots in the drought tolerance mechanism. Finally, we provided a comprehensive overview of the genetic, molecular, and physiological traits involved in drought tolerance mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01307-7.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA