Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Curr Issues Mol Biol ; 46(3): 2480-2496, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534773

RESUMEN

In the present work, we evaluated the antifungal activities of two novel ebselen analogs, N-allyl-benzisoselenazol-3(2H)-one (N-allyl-bs) and N-3-methylbutylbenzisoselenazol-3(2H)-one (N-3mb-bs). Colorimetric and turbidity assays were performed to determine the minimum inhibitory concentration (MIC) of these compounds in S1 (fluconazole-sensitive) and S2 (fluconazole-resistant) strains of C. albicans. N-3mb-bs was more active than the N-allyl-bs compound. It is noteworthy that the concentration of N-3mb-bs observed to inhibit fungal growth by 50% (18.2 µM) was similar to the concentration observed to inhibit the activity of the yeast plasma membrane H+-ATPase (Pma1p) by 50% (19.6 µM). We next implemented a mouse model of vulvovaginal candidiasis (VVC) using the S1 strain and examined the mouse and yeast proteins present in the vaginal lavage fluid using proteomics. The yeast proteins detected were predominately glycolytic enzymes or virulence factors associated with C. albicans while the mouse proteins present in the lavage fluid included eosinophil peroxidase, desmocollin-1, and gasdermin-A. We then utilized the N-3mb-bs compound (12.5 mg/kg) in the mouse VVC model and observed that it significantly reduced the vaginal fungal burden, histopathological changes in vagina tissue, and expression of myeloperoxidase (MPO). All in all, the present work has identified a potentially promising drug candidate for VVC treatment.

2.
Am J Physiol Renal Physiol ; 326(1): F143-F151, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942538

RESUMEN

There is growing consensus that under physiological conditions, collecting duct H+ secretion is independent of epithelial Na+ channel (ENaC) activity. We have recently shown that the direct ENaC inhibitor benzamil acutely impairs H+ excretion by blocking renal H+-K+-ATPase. However, the question remains whether inhibition of ENaC per se causes alterations in renal H+ excretion. To revisit this question, we studied the effect of the antibiotic trimethoprim (TMP), which is well known to cause K+ retention by direct ENaC inhibition. The acute effect of TMP (5 µg/g body wt) was assessed in bladder-catheterized mice, allowing real-time measurement of urinary pH, electrolyte, and acid excretion. Dietary K+ depletion was used to increase renal H+-K+-ATPase activity. In addition, the effect of TMP was investigated in vitro using pig gastric H+-K+-ATPase-enriched membrane vesicles. TMP acutely increased natriuresis and decreased kaliuresis, confirming its ENaC-inhibiting property. Under control diet conditions, TMP had no effect on urinary pH or acid excretion. Interestingly, K+ depletion unmasked an acute urine alkalizing effect of TMP. This finding was corroborated by in vitro experiments showing that TMP inhibits H+-K+-ATPase activity, albeit at much higher concentrations than benzamil. In conclusion, under control diet conditions, TMP inhibited ENaC function without changing urinary H+ excretion. This finding further supports the hypothesis that the inhibition of ENaC per se does not impair H+ excretion in the collecting duct. Moreover, TMP-induced urinary alkalization in animals fed a low-K+ diet highlights the importance of renal H+-K+-ATPase-mediated H+ secretion in states of K+ depletion.NEW & NOTEWORTHY The antibiotic trimethoprim (TMP) often mediates K+ retention and metabolic acidosis. We suggest a revision of the underlying mechanism that causes metabolic acidosis. Our results indicate that TMP-induced metabolic acidosis is secondary to epithelial Na+ channel-dependent K+ retention. Under control dietary conditions, TMP does not per se inhibit collecting duct H+ secretion. These findings add further argument against a physiologically relevant voltage-dependent mechanism of collecting duct H+ excretion.


Asunto(s)
Acidosis , Túbulos Renales Colectores , Ratones , Animales , Porcinos , Trimetoprim/farmacología , Trimetoprim/metabolismo , Túbulos Renales Colectores/metabolismo , Canales Epiteliales de Sodio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Antibacterianos/farmacología , Acidosis/metabolismo
3.
RSC Adv ; 13(49): 34836-34846, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38035247

RESUMEN

Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The 13C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3'-endo (N) conformation when bound with high affinity to NKA in the E1Na state, in contrast to the C2'-endo (S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H-C-C-H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand-protein interactions.

4.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959796

RESUMEN

In the present work, a series of N-terpenyl organoselenium compounds (CHB1-6) were evaluated for antimycotic activity by determining the minimum inhibitory concentration (MIC) for each compound in fluconazole (FLU)-sensitive (S1) and FLU-resistant (S2) strains of Candida albicans (C. albicans). The most active compounds in the MIC screen were CHB4 and CHB6, which were then evaluated for cytotoxicity in human cervical cancer cells (KB-3-1) and found to be selective for fungi. Next, CHB4 and CHB6 were investigated for skin irritation using a reconstructed 3D human epidermis and both compounds were considered safe to the epidermis. Using a mouse model of vulvovaginal candidiasis (VVC), CHB4 and CHB6 both exhibited antimycotic efficacy by reducing yeast colonization of the vaginal tract, alleviating injury to the vaginal mucosa, and decreasing the abundance of myeloperoxidase (MPO) expression in the tissue, indicating a reduced inflammatory response. In conclusion, CHB4 and CHB6 demonstrate antifungal activity in vitro and in the mouse model of VVC and represent two new promising antifungal agents.


Asunto(s)
Candidiasis Vulvovaginal , Femenino , Humanos , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/metabolismo , Candidiasis Vulvovaginal/microbiología , Antifúngicos/metabolismo , Fluconazol/farmacología , Candida albicans , Vagina/microbiología , Pruebas de Sensibilidad Microbiana
5.
J Biol Chem ; 299(2): 102811, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539036

RESUMEN

The Na+/K+-ATPase is an integral plasma membrane glycoprotein of all animal cells that couples the exchange of intracellular Na+ for extracellular K+ to the hydrolysis of ATP. The asymmetric distribution of Na+ and K+ is essential for cellular life and constitutes the physical basis of a series of fundamental biological phenomena. The pumping mechanism is explained by the Albers-Post model. It involves the presence of gates alternatively exposing Na+/K+-ATPase transport sites to the intracellular and extracellular sides and includes occluded states in which both gates are simultaneously closed. Unlike for K+, information is lacking about Na+-occluded intermediates, as occluded Na+ was only detected in states incapable of performing a catalytic cycle, including two Na+-containing crystallographic structures. The current knowledge is that intracellular Na+ must bind to the transport sites and become occluded upon phosphorylation by ATP to be transported to the extracellular medium. Here, taking advantage of epigallocatechin-3-gallate to instantaneously stabilize native Na+-occluded intermediates, we isolated species with tightly bound Na+ in an enzyme able to perform a catalytic cycle, consistent with a genuine occluded state. We found that Na+ becomes spontaneously occluded in the E1 dephosphorylated form of the Na+/K+-ATPase, exhibiting positive interactions between binding sites. In fact, the addition of ATP does not produce an increase in Na+ occlusion as it would have been expected; on the contrary, occluded Na+ transiently decreases, whereas ATP lasts. These results reveal new properties of E1 intermediates of the Albers-Post model for explaining the Na+ transport pathway.


Asunto(s)
Biocatálisis , ATPasa Intercambiadora de Sodio-Potasio , Sodio , Animales , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo , Cinética , Potasio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transporte Iónico , Fosforilación , Cationes Monovalentes/metabolismo
6.
J Biol Chem ; 298(9): 102317, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926706

RESUMEN

The Na+,K+-ATPase generates electrochemical gradients of Na+ and K+ across the plasma membrane via a functional cycle that includes various phosphoenzyme intermediates. However, the structure and function of these intermediates and how metal fluorides mimick them require further investigation. Here, we describe a 4.0 Å resolution crystal structure and functional properties of the pig kidney Na+,K+-ATPase stabilized by the inhibitor beryllium fluoride (denoted E2-BeFx). E2-BeFx is expected to mimic properties of the E2P phosphoenzyme, yet with unknown characteristics of ion and ligand binding. The structure resembles the E2P form obtained by phosphorylation from inorganic phosphate (Pi) and stabilized by cardiotonic steroids, including a low-affinity Mg2+ site near ion binding site II. Our anomalous Fourier analysis of the crystals soaked in Rb+ (a K+ congener) followed by a low-resolution rigid-body refinement (6.9-7.5 Å) revealed preocclusion transitions leading to activation of the dephosphorylation reaction. We show that the Mg2+ location indicates a site of initial K+ recognition and acceptance upon binding to the outward-open E2P state after Na+ release. Furthermore, using binding and activity studies, we find that the BeFx-inhibited enzyme is also able to bind ADP/ATP and Na+. These results relate the E2-BeFx complex to a transient K+- and ADP-sensitive E∗P intermediate of the functional cycle of the Na+,K+-ATPase, prior to E2P.


Asunto(s)
Berilio , Glicósidos Cardíacos , Fluoruros , Riñón , ATPasa Intercambiadora de Sodio-Potasio , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Berilio/química , Glicósidos Cardíacos/química , Fluoruros/química , Riñón/enzimología , Cinética , Fosfatos/metabolismo , Fosforilación , Dominios Proteicos , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/química , Porcinos
7.
Compr Physiol ; 12(1): 2659-2679, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34964112

RESUMEN

Na,K-ATPase is an ubiquitous enzyme actively transporting Na-ions out of the cell in exchange for K-ions, thereby maintaining their concentration gradients across the cell membrane. Since its discovery more than six decades ago the Na-pump has been studied extensively and its vital physiological role in essentially every cell has been established. This article aims at providing an overview of well-established biochemical properties with a focus on Na,K-ATPase isoforms, its transport mechanism and principle conformations, inhibitors, and insights gained from crystal structures. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Sodio , Membrana Celular/metabolismo , Humanos , Iones/metabolismo , Potasio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
8.
Biophys J ; 120(13): 2679-2690, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34087213

RESUMEN

Spin labels based on cinobufagin, a specific inhibitor of the Na,K-ATPase, have proved valuable tools to characterize the binding site of cardiotonic steroids (CTSs), which also constitutes the extracellular cation pathway. Because existing literature suggests variations in the physiological responses caused by binding of different CTSs, we extended the original set of spin-labeled inhibitors to the more potent bufalin derivatives. Positioning of the spin labels within the Na,K-ATPase site was defined and visualized by molecular docking. Although the original cinobufagin labels exhibited lower affinity, continuous-wave electron paramagnetic resonance spectra of spin-labeled bufalins and cinobufagins revealed a high degree of pairwise similarity, implying that these two types of CTS bind in the same way. Further analysis of the spectral lineshapes of bound spin labels was performed with emphasis on their structure (PROXYL vs. TEMPO), as well as length and rigidity of the linkers. For comparable structures, the dynamic flexibility increased in parallel with linker length, with the longest linker placing the spin label at the entrance to the binding site. Temperature-related changes in spectral lineshapes indicate that six-membered nitroxide rings undergo boat-chair transitions, showing that the binding-site cross section can accommodate the accompanying changes in methyl-group orientation. D2O-electron spin echo envelope modulation in pulse-electron paramagnetic resonance measurements revealed high water accessibilities and similar polarity profiles for all bound spin labels, implying that the vestibule leading to steroid-binding site and cation-binding sites is relatively wide and water-filled.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Agua , Sitios de Unión , Espectroscopía de Resonancia por Spin del Electrón , Simulación del Acoplamiento Molecular , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Marcadores de Spin
9.
Am J Physiol Renal Physiol ; 320(4): F596-F607, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33554781

RESUMEN

Epithelial Na+ channel (ENaC) blockers elicit acute and substantial increases of urinary pH. The underlying mechanism remains to be understood. Here, we evaluated if benzamil-induced urine alkalization is mediated by an acute reduction in H+ secretion via renal H+-K+-ATPases (HKAs). Experiments were performed in vivo on HKA double-knockout and wild-type mice. Alterations in dietary K+ intake were used to change renal HKA and ENaC activity. The acute effects of benzamil (0.2 µg/g body wt, sufficient to block ENaC) on urine flow rate and urinary electrolyte and acid excretion were monitored in anesthetized, bladder-catheterized animals. We observed that benzamil acutely increased urinary pH (ΔpH: 0.33 ± 0.07) and reduced NH4+ and titratable acid excretion and that these effects were distinctly enhanced in animals fed a low-K+ diet (ΔpH: 0.74 ± 0.12), a condition when ENaC activity is low. In contrast, benzamil did not affect urine acid excretion in animals kept on a high-K+ diet (i.e., during high ENaC activity). Thus, urine alkalization appeared completely uncoupled from ENaC function. The absence of benzamil-induced urinary alkalization in HKA double-knockout mice confirmed the direct involvement of these enzymes. The inhibitory effect of benzamil was also shown in vitro for the pig α1-isoform of HKA. These results suggest a revised explanation of the benzamil effect on renal acid-base excretion. Considering the conditions used here, we suggest that it is caused by a direct inhibition of HKAs in the collecting duct and not by inhibition of the ENaC function.NEW & NOTEWORTHY Bolus application of epithelial Na+ channel (EnaC) blockers causes marked and acute increases of urine pH. Here, we provide evidence that the underlying mechanism involves direct inhibition of the H+-K+ pump in the collecting duct. This could provide a fundamental revision of the previously assumed mechanism that suggested a key role of ENaC inhibition in this response.


Asunto(s)
Amilorida/análogos & derivados , Canales Epiteliales de Sodio/efectos de los fármacos , ATPasa Intercambiadora de Hidrógeno-Potásio/efectos de los fármacos , Sodio/metabolismo , Amilorida/farmacología , Animales , Canales Epiteliales de Sodio/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Túbulos Renales Colectores/metabolismo , Ratones , Natriuresis/efectos de los fármacos , Eliminación Renal/efectos de los fármacos , Eliminación Renal/fisiología , Sodio en la Dieta/metabolismo
10.
J Chem Inf Model ; 61(2): 976-986, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33502848

RESUMEN

Kinetic properties and crystal structures of the Na+,K+-ATPase in complex with cardiotonic steroids (CTS) revealed significant differences between CTS subfamilies (Laursen et al.). Thus, we found beneficial effects of K+ on bufadienolide binding, which strongly contrasted with the well-known antagonism between K+ and cardenolides. In order to understand this peculiarity of bufalin interactions, we used docking and molecular dynamics simulations of the complexes involving Na+,K+-ATPase, bufadienolides (bufalin, cinobufagin), and ions (K+, Na+, Mg2+). The results revealed that bufadienolide binding is affected by (i) electrostatic attraction of the lactone ring by a cation and (ii) the ability of a cation to stabilize and "shape" the site constituted by transmembrane helices of the α-subunit (αM1-6). The latter effect was due to varying coordination patterns involving amino acid residues from helix bundles αM1-4 and αM5-10. Substituents on the steroid core of a bufadienolide add to and modify the cation effects. The above rationale is fully consistent with the ion effects on the kinetics of Na+,K+-ATPase/bufadienolide interactions.


Asunto(s)
Bufanólidos , Ouabaína , Cationes , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA