Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Dev Cell ; 59(16): 2239-2253.e9, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38788714

RESUMEN

The salamander limb correctly regenerates missing limb segments because connective tissue cells have segment-specific identities, termed "positional information". How positional information is molecularly encoded at the chromatin level has been unknown. Here, we performed genome-wide chromatin profiling in mature and regenerating axolotl limb connective tissue cells. We find segment-specific levels of histone H3K27me3 as the major positional mark, especially at limb homeoprotein gene loci but not their upstream regulators, constituting an intrinsic segment information code. During regeneration, regeneration-specific regulatory elements became active prior to the re-appearance of developmental regulatory elements. In the hand, the permissive chromatin state of the homeoprotein gene HoxA13 engages with the regeneration program bypassing the upper limb program. Comparison of regeneration regulatory elements with those found in other regenerative animals identified a core shared set of transcription factors, supporting an ancient, conserved regeneration program.


Asunto(s)
Ambystoma mexicanum , Cromatina , Extremidades , Proteínas de Homeodominio , Regeneración , Animales , Regeneración/genética , Regeneración/fisiología , Cromatina/metabolismo , Cromatina/genética , Ambystoma mexicanum/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Histonas/metabolismo , Histonas/genética , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
2.
ACS Nano ; 17(21): 20776-20803, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37874930

RESUMEN

External light sources, such as lasers, light emitting diodes (LEDs) and lamps, are widely applied in photodynamic therapy (PDT); however, their use is severely limited by the nature of shallow tissue penetration depth. The recent exploration of light delivery or local generation on tumor sites has attracted much attention, owing to the fact that these systems are significantly endowed with high tissue penetration. In this review, we briefly introduced the principle of "on-spot light generation or delivery systems" in PDT. These systems are divided into different categories: (1) implantable luminescence, (2) mechanoluminescence, (3) electrochemiluminescence, (4) Cerenkov luminescence, (5) chemiluminescence, and (6) bioluminescence. Finally, their applications, advantages, and disadvantages in PDT will be appropriately summarized and further discussed in detail. We believe that this review will provide general guidance for the further design of light generation or delivery systems and clinical studies for PDT-mediated cancer treatments with unparalleled merits.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
3.
Cell Transplant ; 32: 9636897231200059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37724837

RESUMEN

The tetrapod salamander species axolotl (Ambystoma mexicanum) is capable of regenerating injured brain. For better understanding the mechanisms of brain regeneration, it is very necessary to establish a rapid and efficient gain-of-function and loss-of-function approaches to study gene function in the axolotl brain. Here, we establish and optimize an electroporation-based method to overexpress or knockout/knockdown target gene in ependymal glial cells (EGCs) in the axolotl telencephalon. By orientating the electrodes, we were able to achieve specific expression of EGFP in EGCs located in dorsal, ventral, medial, or lateral ventricular zones. We then studied the role of Cdc42 in brain regeneration by introducing Cdc42 into EGCs through electroporation, followed by brain injury. Our findings showed that overexpression of Cdc42 in EGCs did not significantly affect EGC proliferation and production of newly born neurons, but it disrupted their apical polarity, as indicated by the loss of the ZO-1 tight junction marker. This disruption led to a ventricular accumulation of newly born neurons, which are failed to migrate into the neuronal layer where they could mature, thus resulted in a delayed brain regeneration phenotype. Furthermore, when electroporating CAS9-gRNA protein complexes against TnC (Tenascin-C) into EGCs of the brain, we achieved an efficient knockdown of TnC. In the electroporation-targeted area, TnC expression is dramatically reduced at both mRNA and protein levels. Overall, this study established a rapid and efficient electroporation-based gene manipulation approach allowing for investigation of gene function in the process of axolotl brain regeneration.


Asunto(s)
Ambystoma mexicanum , Encéfalo , Animales , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Encéfalo/metabolismo , Electroporación , Neuronas/metabolismo , Proteína 9 Asociada a CRISPR/genética , Expresión Génica
4.
Sci Data ; 10(1): 627, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709774

RESUMEN

Axolotl (Ambystoma mexicanum) is an excellent model for investigating regeneration, the interaction between regenerative and developmental processes, comparative genomics, and evolution. The brain, which serves as the material basis of consciousness, learning, memory, and behavior, is the most complex and advanced organ in axolotl. The modulation of transcription factors is a crucial aspect in determining the function of diverse regions within the brain. There is, however, no comprehensive understanding of the gene regulatory network of axolotl brain regions. Here, we utilized single-cell ATAC sequencing to generate the chromatin accessibility landscapes of 81,199 cells from the olfactory bulb, telencephalon, diencephalon and mesencephalon, hypothalamus and pituitary, and the rhombencephalon. Based on these data, we identified key transcription factors specific to distinct cell types and compared cell type functions across brain regions. Our results provide a foundation for comprehensive analysis of gene regulatory programs, which are valuable for future studies of axolotl brain development, regeneration, and evolution, as well as on the mechanisms underlying cell-type diversity in vertebrate brains.


Asunto(s)
Ambystoma mexicanum , Encéfalo , Cromatina , Animales , Ambystoma mexicanum/genética , Ascomicetos , Aprendizaje , Mesencéfalo , Análisis de Expresión Génica de una Sola Célula
6.
J Vis Exp ; (192)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876933

RESUMEN

CRISPR/Cas9 technology has increased the value of zebrafish for modeling human genetic diseases, studying disease pathogenesis, and drug screening, but protospacer adjacent motif (PAM) limitations are a major obstacle to creating accurate animal models of human genetic disorders caused by single-nucleotide variants (SNVs). Until now, some SpCas9 variants with broad PAM compatibility have shown efficiency in zebrafish. The application of the optimized SpRY-mediated adenine base editor (ABE), zSpRY-ABE8e, and synthetically modified gRNA in zebrafish has enabled efficient adenine-guanine base conversion without PAM restriction. Described here is a protocol for efficient adenine base editing without PAM limitation in zebrafish using zSpRY-ABE8e. By injecting a mixture of zSpRY-ABE8e mRNA and synthetically modified gRNA into zebrafish embryos, a zebrafish disease model was constructed with a precise mutation that simulated a pathogenic site of the TSR2 ribosome maturation factor (tsr2). This method provides a valuable tool for the establishment of accurate disease models for studying disease mechanisms and treatments.


Asunto(s)
Edición Génica , Pez Cebra , Animales , Humanos , Adenina , Evaluación Preclínica de Medicamentos , Guanina , ARN Guía de Sistemas CRISPR-Cas
9.
Methods Mol Biol ; 2562: 351-368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36272087

RESUMEN

Tetrapod species axolotls exhibit the powerful capacity to fully regenerate their tail and limbs upon injury, hence serving as an excellent model organism in regenerative biology research. Developing proper molecular and genetic tools in axolotls is an absolute necessity for deep dissection of tissue regeneration mechanisms. Previously, CRISPR-/Cas9-based knockout and targeted gene knock-in approaches have been established in axolotls, allowing genetically deciphering gene function, labeling, and tracing particular types of cells. Here, we further extend the CRISPR/Cas9 technology application and describe a method to create reporter-tagged knockout allele in axolotls. This method combines gene knockout and knock-in and achieves loss of function of a given gene and simultaneous labeling of cells expressing this particular gene, that allows identification, tracking of the "knocking out" cells. Our method offers a useful gene function analysis tool to the field of axolotl developmental and regenerative research.


Asunto(s)
Ambystoma mexicanum , Sistemas CRISPR-Cas , Animales , Ambystoma mexicanum/genética , Sistemas CRISPR-Cas/genética , Alelos , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes
10.
Nat Commun ; 13(1): 6949, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376278

RESUMEN

There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.


Asunto(s)
Osteogénesis , Urodelos , Animales , Huesos , Cartílago , División Celular , Mamíferos
11.
Front Genet ; 13: 1036641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299593

RESUMEN

Regeneration of a complex appendage structure such as limb requires upstream and downstream coordination of multiple types of cells. Given type of cell may sit at higher upstream position to control the activities of other cells. Muscles are one of the major cell masses in limbs. However, the subtle functional relationship between muscle and other cells in vertebrate complex tissue regeneration are still not well established. Here, we use Pax7 mutant axolotls, in which the limb muscle is developmentally lost, to investigate limb regeneration in the absence of skeletal muscle. We find that the pattern of regenerated limbs is relative normal in Pax7 mutants compared to the controls, but the joint is malformed in the Pax7 mutants. Lack of muscles do not affect the early regeneration responses, specifically the recruitment of macrophages to the wound, as well as the proliferation of fibroblasts, another major population in limbs. Furthermore, using single cell RNA-sequencing, we show that, other than muscle lineage that is mostly missing in Pax7 mutants, the composition and the status of other cell types in completely regenerated limbs of Pax7 mutants are similar to that in the controls. Our study reveals skeletal muscle is barely required for the guidance of other cells, as well the patterning in complex tissue regeneration in axolotls, and provides refined views of the roles of muscle cell in vertebrate appendage regeneration.

12.
Science ; 377(6610): eabp9444, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36048929

RESUMEN

The molecular mechanism underlying brain regeneration in vertebrates remains elusive. We performed spatial enhanced resolution omics sequencing (Stereo-seq) to capture spatially resolved single-cell transcriptomes of axolotl telencephalon sections during development and regeneration. Annotated cell types exhibited distinct spatial distribution, molecular features, and functions. We identified an injury-induced ependymoglial cell cluster at the wound site as a progenitor cell population for the potential replenishment of lost neurons, through a cell state transition process resembling neurogenesis during development. Transcriptome comparisons indicated that these induced cells may originate from local resident ependymoglial cells. We further uncovered spatially defined neurons at the lesion site that may regress to an immature neuron-like state. Our work establishes spatial transcriptome profiles of an anamniote tetrapod brain and decodes potential neurogenesis from ependymoglial cells for development and regeneration, thus providing mechanistic insights into vertebrate brain regeneration.


Asunto(s)
Ambystoma mexicanum , Regeneración Cerebral , Células-Madre Neurales , Ambystoma mexicanum/fisiología , Animales , Células-Madre Neurales/fisiología , Análisis de la Célula Individual , Telencéfalo/fisiología , Transcriptoma
13.
Nat Commun ; 13(1): 4228, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869072

RESUMEN

The Mexican axolotl (Ambystoma mexicanum) is a well-established tetrapod model for regeneration and developmental studies. Remarkably, neotenic axolotls may undergo metamorphosis, a process that triggers many dramatic changes in diverse organs, accompanied by gradually decline of their regeneration capacity and lifespan. However, the molecular regulation and cellular changes in neotenic and metamorphosed axolotls are still poorly investigated. Here, we develop a single-cell sequencing method based on combinatorial hybridization to generate a tissue-based transcriptomic landscape of the neotenic and metamorphosed axolotls. We perform gene expression profiling of over 1 million single cells across 19 tissues to construct the first adult axolotl cell landscape. Comparison of single-cell transcriptomes between the tissues of neotenic and metamorphosed axolotls reveal the heterogeneity of non-immune parenchymal cells in different tissues and established their regulatory network. Furthermore, we describe dynamic gene expression patterns during limb development in neotenic axolotls. This system-level single-cell analysis of molecular characteristics in neotenic and metamorphosed axolotls, serves as a resource to explore the molecular identity of the axolotl and facilitates better understanding of metamorphosis.


Asunto(s)
Ambystoma mexicanum , Metamorfosis Biológica , Ambystoma mexicanum/genética , Animales , Perfilación de la Expresión Génica , Metamorfosis Biológica/genética , Hibridación de Ácido Nucleico
14.
Nat Commun ; 13(1): 3421, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701400

RESUMEN

Precise genetic modifications in model organisms are essential for biomedical research. The recent development of PAM-less base editors makes it possible to assess the functional impact and pathogenicity of nucleotide mutations in animals. Here we first optimize SpG and SpRY systems in zebrafish by purifying protein combined with synthetically modified gRNA. SpG shows high editing efficiency at NGN PAM sites, whereas SpRY efficiently edit PAM-less sites in the zebrafish genome. Then, we generate the SpRY-mediated cytosine base editor SpRY-CBE4max and SpRY-mediated adenine base editor zSpRY-ABE8e. Both target relaxed PAM with up to 96% editing efficiency and high product purity. With these tools, some previously inaccessible disease-relevant genetic variants are generated in zebrafish, supporting the utility of high-resolution targeting across genome-editing applications. Our study significantly improves CRISPR-Cas targeting in the genomic landscape of zebrafish, promoting the application of this model organism in revealing gene function, physiological mechanisms, and disease pathogenesis.


Asunto(s)
Proteína 9 Asociada a CRISPR , Edición Génica , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Citosina , Pez Cebra/genética , Pez Cebra/metabolismo
15.
Cell ; 185(10): 1777-1792.e21, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35512705

RESUMEN

Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.


Asunto(s)
Organogénesis , Transcriptoma , Animales , ADN/genética , Embrión de Mamíferos , Femenino , Perfilación de la Expresión Génica/métodos , Mamíferos/genética , Ratones , Organogénesis/genética , Embarazo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genética
16.
Dev Dyn ; 251(6): 942-956, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33949035

RESUMEN

The ability to generate transgenic animals sparked a wave of research committed to implementing such technology in a wide variety of model organisms. Building a solid base of ubiquitous and tissue-specific reporter lines has set the stage for later interrogations of individual cells or genetic elements. Compared to other widely used model organisms such as mice, zebrafish and fruit flies, there are only a few transgenic lines available in the laboratory axolotl (Ambystoma mexicanum), although their number is steadily expanding. In this review, we discuss a brief history of the transgenic methodologies in axolotl and their advantages and disadvantages. Next, we discuss available transgenic lines and insights we have been able to glean from them. Finally, we list challenges when developing transgenic axolotl, and where further work is needed in order to improve their standing as both a developmental and regenerative model.


Asunto(s)
Ambystoma mexicanum , Pez Cebra , Animales , Animales Modificados Genéticamente , Ratones
17.
Dev Dyn ; 251(6): 913-921, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33896069

RESUMEN

The laboratory axolotl (Ambystoma mexicanum) is widely used in biological research. Recent advancements in genetic and molecular toolkits are greatly accelerating the work using axolotl, especially in the area of tissue regeneration. At this juncture, there is a critical need to establish gene and transgenic nomenclature to ensure uniformity in axolotl research. Here, we propose guidelines for genetic nomenclature when working with the axolotl.


Asunto(s)
Ambystoma mexicanum , Cicatrización de Heridas , Ambystoma mexicanum/genética , Animales , Animales Modificados Genéticamente
18.
Cell Regen ; 10(1): 12, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33817749

RESUMEN

A successful tissue regeneration is a very complex process that requires a precise coordination of many molecular, cellular and physiological events. One of the critical steps is to convert the injury signals into regeneration signals to initiate tissue regeneration. Although many efforts have been made to investigate the mechanisms triggering tissue regeneration, the fundamental questions remain unresolved. One of the major obstacles is that the injury and the initiation of regeneration are two highly coupled processes and hard to separate from one another. In this article, we review the major events occurring at the early injury/regeneration stage in a range of species, and discuss the possible common mechanisms during initiation of tissue regeneration.

19.
Nat Commun ; 11(1): 3101, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555348

RESUMEN

Orderly chromosome segregation is enabled by crossovers between homologous chromosomes in the first meiotic division. Crossovers arise from recombination-mediated repair of programmed DNA double-strand breaks (DSBs). Multiple DSBs initiate recombination, and most are repaired without crossover formation, although one or more generate crossovers on each chromosome. Although the underlying mechanisms are ill-defined, the differentiation and maturation of crossover-specific recombination intermediates requires the cyclin-like CNTD1. Here, we identify PRR19 as a partner of CNTD1. We find that, like CNTD1, PRR19 is required for timely DSB repair and the formation of crossover-specific recombination complexes. PRR19 and CNTD1 co-localise at crossover sites, physically interact, and are interdependent for accumulation, indicating a PRR19-CNTD1 partnership in crossing over. Further, we show that CNTD1 interacts with a cyclin-dependent kinase, CDK2, which also accumulates in crossover-specific recombination complexes. Thus, the PRR19-CNTD1 complex may enable crossover differentiation by regulating CDK2.


Asunto(s)
Intercambio Genético/genética , Ciclinas/genética , Roturas del ADN de Doble Cadena , Meiosis/genética , Animales , Cromosomas/genética , Quinasa 2 Dependiente de la Ciclina/genética , Daño del ADN/genética , Reparación del ADN/genética , Femenino , Recombinación Homóloga/genética , Masculino , Ratones
20.
iScience ; 19: 162-176, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31376679

RESUMEN

Pig has been proved to be a valuable large animal model used for research on diabetic disease. However, their translational value is limited given their distinct anatomy and physiology. For the last 30 years, we have been developing a laboratory Asian miniature pig inbred line (Bama miniature pig [BM]) from the primitive Bama xiang pig via long-term selective inbreeding. Here, we assembled a BM reference genome at full chromosome-scale resolution with a total length of 2.49 Gb. Comparative and evolutionary genomic analyses identified numerous variations between the BM and commercial pig (Duroc), particularly those in the genetic loci associated with the features advantageous to diabetes studies. Resequencing analyses revealed many differentiated gene loci associated with inbreeding and other selective forces. These together with transcriptome analyses of diabetic pig models provide a comprehensive genetic basis for resistance to diabetogenic environment, especially related to energy metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA