Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Invertebr Pathol ; 192: 107786, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35700790

RESUMEN

Diseases of bivalve molluscs caused by paramyxid parasites of the genus Marteilia have been linked to mass mortalities and the collapse of commercially important shellfish populations. Until recently, no Marteilia spp. have been detected in common cockle (Cerastoderma edule) populations in the British Isles. Molecular screening of cockles from ten sites on the Welsh coast indicates that a Marteilia parasite is widespread in Welsh C. edule populations, including major fisheries. Phylogenetic analysis of ribosomal DNA (rDNA) gene sequences from this parasite indicates that it is a closely related but different species to Marteilia cochillia, a parasite linked to mass mortality of C. edule fisheries in Spain, and that both are related to Marteilia octospora, for which we provide new rDNA sequence data. Preliminary light and transmission electron microscope (TEM) observations support this conclusion, indicating that the parasite from Wales is located primarily within areas of inflammation in the gills and the connective tissue of the digestive gland, whereas M. cochillia is found mainly within the epithelium of the digestive gland. The impact of infection by the new species, here described as Marteilia cocosarum n. sp., upon Welsh fisheries is currently unknown.


Asunto(s)
Bivalvos , Cardiidae , Parásitos , Animales , Bivalvos/parasitología , Cardiidae/parasitología , ADN Ribosómico , Explotaciones Pesqueras , Filogenia , Gales
2.
Dis Aquat Organ ; 148: 153-166, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35445663

RESUMEN

Agapollen is a traditional heliothermic marine oyster lagoon in western Norway, representing the northernmost site of any Marteilia sp. protists detected in Europe. The semi-closed lagoon is a unique site to study the life cycle and development of M. pararefringens in naïve mussels. Two baskets with uninfected mussels were deployed in the lagoon outlet in May and October 2018, respectively, and sampled every 6 wk. The parasite was first detected in the mussels by PCR in early July and by histology in late August. By then, M. pararefringens had developed into mature stages, indicating a rapid development during mid-summer. Sporulation occurred during autumn. Mussels deployed in October never became infected, indicating that transmission was restricted to the warmest period of the year. Pronounced pathology was observed in infected mussels, including degenerated digestive tubules and infiltration of haemocytes. Mussel mortality was observed in the baskets, but whether this was due to infections of M. pararefringens or other environmental factors could not be determined. Plankton samples from the lagoon were also collected for PCR analysis. These samples, dominated by copepods, were positive for M. pararefringens in summer. In sorted samples, M. pararefringens was detected in the Acartia spp. and Paracartia grani fractions between July and October. These plankton copepods are therefore potentially involved in the life cycle of M. pararefringens.


Asunto(s)
Copépodos , Mytilus edulis , Mytilus , Ostreidae , Parásitos , Animales , Copépodos/parasitología , Eucariontes , Mytilus/parasitología , Mytilus edulis/parasitología
3.
Dis Aquat Organ ; 148: 167-181, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35445664

RESUMEN

The velvet swimming crab Necora puber has been fished in Ireland since the early 1980s and contributes significant income to smaller fishing vessels. From 2016 onwards, reduced landings have been reported. We undertook a full pathological investigation of crabs from fishing grounds at 3 sites on the west (Galway), southwest (Castletownbere) and east (Howth) coasts of Ireland. Histopathology, transmission electron microscopy and molecular taxonomic and phylogenetic analyses showed high prevalence and infection level of Paramarteilia canceri, previously only reported from the edible crab Cancer pagurus. This study provides the first molecular data for P. canceri, and shows its phylogenetic position in the order Paramyxida (Rhizaria). Other parasites and symbionts detected in the crabs were also noted, including widespread but low co-infection with Hematodinium sp. and a microsporidian consistent with the Ameson and Nadelspora genera. This is the first histological record of Hematodinium sp. in velvet crabs from Ireland. Four N. puber individuals across 2 sites were co-infected by P. canceri and Hematodinium sp. At one site, 3 velvet crabs infected with P. canceri were co-infected with the first microsporidian recorded from this host; the microsporidian 18S sequence was almost identical to Ameson pulvis, known to infect European shore crabs Carcinus maenas. The study provides a comprehensive phylogenetic analysis of this and all other available Ameson and Nadelspora 18S sequences. Together, these findings provide a baseline for further investigations of N. puber populations along the coast of Ireland.


Asunto(s)
Braquiuros , Dinoflagelados , Animales , Irlanda/epidemiología , Filogenia , Prevalencia , Natación
4.
Pathogens ; 11(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335653

RESUMEN

In the last decade, declines in the population of wild blue mussels Mytilus edulis in the Tamar estuary (United Kingdom) have been noted. In archived samples collected from 2013 to 2019, between 7% (in 2013) and 18% (in 2019) showed large granulocytoma and haemocytic infiltration in the interstitial tissue of the digestive gland. Four samples were selected for 16S rRNA gene Nanopore sequencing. A consensus sequence of 1449 bp showed nucleotide similarities between 99.93-100% with published sequences of Francisella halioticida. In situ hybridisation (ISH) confirmed the presence of F. halioticida DNA within individual granulocytes of granulocytomas and also in prokaryotic-like inclusion bodies within the digestive epithelial cells. The design of diagnostic tests for surveillance of F. halioticida, including more specific ISH probes and sequencing the genome of the isolates infecting mussels, will shed more light on the pathogenicity and spread of this pathogen.

5.
J Eukaryot Microbiol ; 69(2): e12875, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34726818

RESUMEN

This study provides a morphological, ultrastructural, and phylogenetic characterization of a novel micro-eukaryotic parasite (2.3-2.6 µm) infecting amphipod genera Echinogammarus and Orchestia. Longitudinal studies across two years revealed that infection prevalence peaked in late April and May, reaching 64% in Echinogammarus sp. and 15% in Orchestia sp., but was seldom detected during the rest of the year. The parasite infected predominantly hemolymph, connective tissue, tegument, and gonad, although hepatopancreas and nervous tissue were affected in heavier infections, eliciting melanization and granuloma formation. Cell division occurred inside walled parasitic cysts, often within host hemocytes, resulting in hemolymph congestion. Small subunit (18S) rRNA gene phylogenies including related environmental sequences placed the novel parasite as a highly divergent lineage within Class Filasterea, which together with Choanoflagellatea represent the closest protistan relatives of Metazoa. We describe the new parasite as Txikispora philomaios n. sp. n. g., the first confirmed parasitic filasterean lineage, which otherwise comprises four free-living flagellates and a rarely observed endosymbiont of snails. Lineage-specific PCR probing of other hosts and surrounding environments only detected T. philomaios in the platyhelminth Procerodes sp. We expand the known diversity of Filasterea by targeted searches of metagenomic datasets, resulting in 13 previously unknown lineages from environmental samples.


Asunto(s)
Anfípodos , Anfípodos/parasitología , Animales , Eucariontes , Células Eucariotas , Filogenia , Reacción en Cadena de la Polimerasa
6.
Pathogens ; 10(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946332

RESUMEN

An unusual condition affecting market size rainbow trout was investigated. This condition was prevalent for several years at low levels but affected a large proportion of stock during 2018 and 2019. Chronic fibrosis affecting cranial tissues and the jaw was observed in samples collected in 2018. A larger sampling was then conducted in 2019 to investigate the presence of an infectious agent(s). An extensive inflammatory response in the mandibular region was the main finding, however infectious agents in the lesions were not identified through classical virology and bacteriology analysis. Tetracapsuloides bryosalmonae infection, calcinosis, and a Gram-positive bacterial infection of a single fish cardiac tissue was observed, however, a correlation of these pathologies and the cranial mandibular fibrosis (CMF) syndrome was not established. The gene expression of a panel of 16 immune-related genes was studied. Among these, tgf-b, sIgM, il11, hspa, and the antimicrobial peptides lys and cath1 were up-regulated in jaw sections of CMF-affected fish, showing a strong positive correlation with the severity of the lesions. Idiopathic chronic fibrosis with the activation of the Tfg-B pathway and local hyper-immunoglobulaemia was therefore diagnosed. Initiating factors and causative agent(s) (biotic or abiotic) of CMF remain, at present, unclear.

7.
Transbound Emerg Dis ; 68(3): 1550-1563, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32920975

RESUMEN

In late 2018, unusual patterns of very high mortality (>50% production) were reported in intensive tilapia cage culture systems across Lake Volta in Ghana. Samples of fish and fry were collected and analysed from two affected farms between October 2018 and February 2019. Affected fish showed darkening, erratic swimming and abdominal distension with associated ascites. Histopathological observations of tissues taken from moribund fish at different farms revealed lesions indicative of viral infection. These included haematopoietic cell nuclear and cytoplasmic pleomorphism with marginalization of chromatin and fine granulation. Transmission electron microscopy showed cells containing conspicuous virions with typical iridovirus morphology, that is enveloped, with icosahedral and/or polyhedral geometries and with a diameter c.160 nm. PCR confirmation and DNA sequencing identified the virions as infectious spleen and kidney necrosis virus (ISKNV). Samples of fry and older animals were all strongly positive for the presence of the virus by qPCR. All samples tested negative for TiLV and nodavirus by qPCR. All samples collected from farms prior to the mortality event were negative for ISKNV. Follow-up testing of fish and fry sampled from 5 additional sites in July 2019 showed all farms had fish that were PCR-positive for ISKNV, whether there was active disease on the farm or not, demonstrating the disease was endemic to farms all over Lake Volta by that point. The results suggest that ISKNV was the cause of disease on the investigated farms and likely had a primary role in the mortality events. A common observation of coinfections with Streptococcus agalactiae and other tilapia bacterial pathogens further suggests that these may interact to cause severe pathology, particularly in larger fish. Results demonstrate that there are a range of potential threats to the sustainability of tilapia aquaculture that need to be guarded against.


Asunto(s)
Cíclidos , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/diagnóstico , Iridoviridae/aislamiento & purificación , Animales , Acuicultura , Infecciones por Virus ADN/diagnóstico , Infecciones por Virus ADN/virología , Enfermedades de los Peces/virología , Ghana
8.
Front Microbiol ; 11: 577481, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193196

RESUMEN

Intracellular microcolonies of bacteria (IMC), in some cases developing large extracellular cysts (bacterial aggregates), infecting primarily gill and digestive gland, have been historically reported in a wide diversity of economically important mollusk species worldwide, sometimes associated with severe lesions and mass mortality events. As an effort to characterize those organisms, traditionally named as Rickettsia or Chlamydia-like organisms, 1950 specimens comprising 22 mollusk species were collected over 10 countries and after histology examination, a selection of 99 samples involving 20 species were subjected to 16S rRNA gene amplicon sequencing. Phylogenetic analysis showed Endozoicomonadaceae sequences in all the mollusk species analyzed. Geographical differences in the distribution of Operational Taxonomic Units (OTUs) and a particular OTU associated with pathology in king scallop (OTU_2) were observed. The presence of Endozoicomonadaceae sequences in the IMC was visually confirmed by in situ hybridization (ISH) in eight selected samples. Sequencing data also indicated other symbiotic bacteria. Subsequent phylogenetic analysis of those OTUs revealed a novel microbial diversity associated with molluskan IMC infection distributed among different taxa, including the phylum Spirochetes, the families Anaplasmataceae and Simkaniaceae, the genera Mycoplasma and Francisella, and sulfur-oxidizing endosymbionts. Sequences like Francisella halioticida/philomiragia and Candidatus Brownia rhizoecola were also obtained, however, in the absence of ISH studies, the association between those organisms and the IMCs were not confirmed. The sequences identified in this study will allow for further molecular characterization of the microbial community associated with IMC infection in marine mollusks and their correlation with severity of the lesions to clarify their role as endosymbionts, commensals or true pathogens.

9.
Parasitology ; 147(11): 1229-1237, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32539882

RESUMEN

This study provides a morphological and phylogenetic characterization of two novel species of the order Haplosporida (Haplosporidium carcini n. sp., and H. cranc n. sp.) infecting the common shore crab Carcinus maenas collected at one location in Swansea Bay, South Wales, UK. Both parasites were observed in the haemolymph, gills and hepatopancreas. The prevalence of clinical infections (i.e. parasites seen directly in fresh haemolymph preparations) was low, at ~1%, whereas subclinical levels, detected by polymerase chain reaction, were slightly higher at ~2%. Although no spores were found in any of the infected crabs examined histologically (n = 334), the morphology of monokaryotic and dikaryotic unicellular stages of the parasites enabled differentiation between the two new species. Phylogenetic analyses of the new species based on the small subunit (SSU) rDNA gene placed H. cranc in a clade of otherwise uncharacterized environmental sequences from marine samples, and H. carcini in a clade with other crustacean-associated lineages.


Asunto(s)
Braquiuros/parasitología , Haplosporidios , Animales , Genes Protozoarios , Branquias/parasitología , Haplosporidios/clasificación , Haplosporidios/genética , Haplosporidios/aislamiento & purificación , Hemolinfa/parasitología , Hepatopáncreas/parasitología , Filogenia , Prevalencia
10.
Viruses ; 12(5)2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466150

RESUMEN

This is the first record of a fish nidovirus isolated from a consignment of goldfish at the United Kingdom (UK) border. The full-length viral genome was 25,985 nt, sharing a 97.9% nucleotide identity with the Chinook salmon bafinivirus (CSBV) NIDO with two deletions of 537 and 480 nt on the ORF Ia protein. To assess the potential impact on UK fish species, Atlantic salmon, common carp and goldfish were exposed to the virus via an intraperitoneal (IP) injection and bath challenge. Moribundity was recorded in only 8% of IP-injected goldfish. A high viral load, ≈107 of the CSBV PpIa gene, was measured in the kidney of moribund goldfish. Mild histopathological changes were observed in the kidneys of challenged carps. Ultrastructural observations in renal tubule epithelial cells of goldfish showed cylindrical tubes (≈15 nm in diameter) and tubular structures budding spherical virions (≈200 nm in diameter) with external spike-like structures. Negative staining showed both circular and bacilliform virions. Seroconversion was measured in common carp and goldfish but not in Atlantic salmon. This study reinforces the potential risk of novel and emerging pathogens being introduced to recipient countries via the international ornamental fish trade and the importance of regular full health screens at the border inspection posts to reduce this risk.


Asunto(s)
Coronaviridae/aislamiento & purificación , Enfermedades de los Peces/virología , Carpa Dorada/virología , Salmón/virología , Animales , Carpas/virología , Coronaviridae/clasificación , Coronaviridae/genética , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/patología , Genes Virales/genética , Genoma Viral , Riñón/patología , Riñón/virología , Nidovirales , Filogenia , Reino Unido , Virulencia
11.
Chemosphere ; 256: 126946, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32445993

RESUMEN

Hepatocellular fibrillar inclusions (HFI) are an unusual pathology of unknown aetiology affecting European flounder (Platichthys flesus), particularly from estuaries historically impacted by pollution. This study demonstrated that the HFI prevalence range was 6-77% at several UK estuaries, with Spearman rank correlation analysis showing a correlation between HFI prevalence and sediment concentrations of ∑PBDEs and ∑HBCDs. The data showed that males exhibit higher HFI prevalence than females, with severity being more pronounced in estuaries exhibiting higher prevalence. HFI were not age associated indicating a subacute condition. Electron microscopy confirmed that HFI were modified proliferating rough endoplasmic reticulum (RER), whilst immunohistochemistry provided evidence of VTG production in HFI of male P. flesus. Despite positive labelling of aberrant VTG production, we could not provide additional evidence of xenoestrogen exposure. Gene transcripts (VTG/CHR) and plasma VTG concentrations (>1 µg ml-1), were only considered elevated in four male fish showing no correlation with HFI severity. Further analysis revealed that reproductively mature female P. flesus i.e. >3-year-old, did not exhibit HFI, whereas males of all ages were affected. This, combined with previous reports that estradiol (E2) can impair mixed function oxygenase activity, supports a hypothesis that harmful chemical metabolites (following phase 1 metabolism of their parent compounds) are potentially responsible for HFIs observed in male and ≤ 3-year-old female fish. Consequently, HFI and xenoestrogenic induced VTG production could be independent of each other resulting from different concurrent toxicopathic mechanisms, although laboratory exposures will likely be the only way to determine the true aetiology of HFI.


Asunto(s)
Carcinoma Hepatocelular/veterinaria , Lenguado/fisiología , Neoplasias Hepáticas/veterinaria , Animales , Carcinoma Hepatocelular/patología , Contaminación Ambiental , Estradiol/metabolismo , Estrógenos/metabolismo , Estuarios , Femenino , Peces , Lenguado/metabolismo , Hígado/patología , Neoplasias Hepáticas/patología , Masculino , Reino Unido , Contaminantes Químicos del Agua/metabolismo
12.
Dis Aquat Organ ; 136(2): 133-146, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31621646

RESUMEN

Wild-caught ballan wrasse Labrus bergylta are translocated en masse from the British south-west coast to Scotland for use as cleaner fish to tackle Atlantic salmon Salmo salar sea lice infestations; however, very little is known about the background health status of this species. This is the first health assessment of wild ballan wrasse from the British south-west. Wild-caught ballan wrasse (n = 75) from coastal populations off Dorset and Cornwall were subjected to a full health screen for viral, bacterial and parasitic infections and associated pathology. A range of metazoan and protozoan parasites were observed in histological sections, including copepods (sea lice Caligus centrodonti), nematodes, cestodes, digenean metacercariae, Cryptocaryon-like ciliates and an intestinal coccidian (Eimeria sp.) observed in 26.6% of the samples. The mycoplasma Acholeplasma laidlawii was associated with cytopathic effect in cell culture inoculated with tissue homogenates. The opportunistic pathogen Photobacterium damselae damselae was isolated from a single fish with a systemic infection. The isolate was confirmed to possess the virulence factors hlyAch and plpV, previously associated with cell toxicity and pathogenicity to fish. There are no immediate concerns for the continued mass translation of ballan wrasse, however careful monitoring of the population is recommended.


Asunto(s)
Enfermedades de los Peces , Perciformes , Animales , Océanos y Mares , Escocia
13.
Dis Aquat Organ ; 136(1): 89-105, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31575837

RESUMEN

This study provides morphological, ultrastructural and phylogenetic characterization of 2 novel species of Haplosporidia (Haplosporidium echinogammari n. sp. and H. orchestiae n. sp.) infecting amphipods of the genera Echinogammarus and Orchestia collected in southwestern England. Both parasites infect the connective tissues associated with the digestive gland and the tegument, and eventually infect other organs causing disruption of host tissues with associated motor impairment and fitness reduction. Prevalence of infection varied with host species, provenance and season, being as high as 75% for individuals of E. marinus infected with H. echinogammari in June (n = 50). Although no spores were found in any of the infected amphipods examined (n = 82), the morphology of monokaryotic and dikaryotic unicellular stages of the parasites enabled differentiation between the 2 new species. Phylogenetic analysis of the new species based on the small subunit (SSU) rDNA gene placed H. echinogammari close to H. diporeiae in haplosporidian lineage C, and H. orchestiae in a novel branch within Haplosporidium. Genetic diversity of the haplosporidians infecting these and other amphipod species was evaluated and compared to morphological and ultrastructural changes to host tissues. The phylogenetic relationship of haplosporidian infections in other crustacean hosts is discussed after inclusion into the analysis of 25 novel SSU rDNA sequences obtained from crabs, isopods and crayfish.


Asunto(s)
Anfípodos/parasitología , Haplosporidios/clasificación , Filogenia , Animales , Inglaterra , Haplosporidios/ultraestructura
14.
Dis Aquat Organ ; 133(1): 57-68, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31089003

RESUMEN

The edible mussel Mytilus edulis is a major aquaculture commodity in Europe, with 168000 t produced in 2015. A number of abundant, well characterised parasites of the species are known, though none are considered to cause significant mortality. Haplosporida (Rhizaria, Endomyxa) is an order of protistan parasites of aquatic invertebrates, the best studied of which are the oyster pathogens Haplosporidium nelsoni and Bonamia ostreae. While these species are well characterised within their hosts, the diversity, life-cycle and modes of transmission of haplosporidians are very poorly understood. Haplosporidian parasites have previously been reported from Mytilus spp., however the majority of these remain uncharacterised, and no molecular data exist for any species. In this study, we identified 2 novel haplosporidian parasites of M. edulis present in the UK. The first of these, observed by light microscopy and in situ hybridisation infecting the gills, mantle, gonadal tubules and digestive connective tissues of mussels in the Tamar estuary, England, we describe as Minchinia mytili on the basis of 18S sequence data. The second, observed infecting a single archive specimen collected in Loch Spelve, Mull, Scotland, infects the foot muscle, gills and connective tissue of the digestive gland. Sequence data places this parasite in an uncharacterised clade of sequences amplified from tropical bivalve guts and water samples, sister to H. nelsoni. Screening of water and sediment samples collected at the sample site in the Tamar estuary revealed the presence of both sequence types in the water column, suggesting host-free or planktonic life stages.


Asunto(s)
Haplosporidios , Animales , Inglaterra , Europa (Continente) , Escocia
15.
Dis Aquat Organ ; 134(2): 167-173, 2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31120042

RESUMEN

The Lyme Bay marine protected area (MPA) hosts a valuable population of king scallop Pecten maximus L. Recently, an Endozoicomonas-like organism (ELO), infecting host gill epithelial tissue, was associated with king scallop mass mortality events within the Lyme Bay MPA. Currently, very little is known about its transmission and survival outside the host. In this investigation, animals collected outside of reported mortality events showed high levels of ELO infection. Gill tissue disruption and the release of bacteria into the interlamellar space was seen histologically, suggesting shedding of ELO from host animals. To investigate pathogen survival outside the host, infected scallops were maintained in static water for a 24 h period, and then removed. Over the subsequent 8 d, water samples were collected and the quantity of ELO 16S rRNA transcript was measured by TaqManTM quantitative PCR (qPCR). The 16S rRNA transcript quantity was stable outside the host for 6 d before bacteria survival declined 2 logs (7.9 × 108 16S rRNA to 2.3 × 106 transcripts), suggesting that ELO can survive independently outside the host organism. The ELO-specific qPCR probe can therefore be used in future field studies of ELO prevalence within the environment and fauna of the Lyme Bay MPA.


Asunto(s)
Pecten , Animales , Branquias , ARN Ribosómico 16S
16.
Fish Shellfish Immunol ; 88: 375-390, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30797951

RESUMEN

Simultaneous and sequential infections often occur in wild and farming environments. Despite growing awareness, co-infection studies are still very limited, mainly to a few well-established human models. European salmonids are susceptible to both Proliferative Kidney Disease (PKD), an endemic emergent disease caused by the myxozoan parasite Tetracapsuloides bryosalmonae, and Viral Haemorrhagic Septicaemia (VHS), an OIE notifiable listed disease caused by the Piscine Novirhabdovirus. No information is available as to how their immune system reacts when interacting with heterogeneous infections. A chronic (PKD) + acute (VHS) sequential co-infection model was established to assess if the responses elicited in co-infected fish are modulated, when compared to fish with single infections. Macro- and microscopic lesions were assessed after the challenge, and infection status confirmed by RT-qPCR analysis, enabling the identification of singly-infected and co-infected fish. A typical histophlogosis associated with histozoic extrasporogonic T. bryosalmonae was detected together with acute inflammation, haemorrhaging and necrosis due to the viral infection. The host immune response was measured in terms of key marker genes expression in kidney tissues. During T. bryosalmonae/VHSV-Ia co-infection, modulation of pro-inflammatory and antimicrobial peptide genes was strongly influenced by the viral infection, with a protracted inflammatory status, perhaps representing a negative side effect in these fish. Earlier activation of the cellular and humoral responses was detected in co-infected fish, with a more pronounced upregulation of Th1 and antiviral marker genes. These results reveal that some brown trout immune responses are enhanced or prolonged during PKD/VHS co-infection, relative to single infection.


Asunto(s)
Coinfección/inmunología , Enfermedades de los Peces/inmunología , Enfermedades Renales/veterinaria , Oncorhynchus mykiss/inmunología , Inmunidad Adaptativa , Animales , Coinfección/parasitología , Coinfección/virología , Modelos Animales de Enfermedad , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/virología , Expresión Génica , Septicemia Hemorrágica Viral/inmunología , Inmunidad Innata , Enfermedades Renales/inmunología , Myxozoa/inmunología , Oncorhynchus mykiss/parasitología , Oncorhynchus mykiss/virología , Enfermedades Parasitarias en Animales/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Células TH1/inmunología
17.
Fish Shellfish Immunol ; 78: 355-363, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29709592

RESUMEN

Puffy skin disease (PSD) is an emerging skin condition which affects rainbow trout, Oncorhynchus mykiss (Walbaum). The transmission pattern of PSD suggests an infectious aetiology, however, the actual causative infectious agent(s) remain(s) unknown. In the present study, the rainbow trout epidermal immune response to PSD was characterised. Skin samples from infected fish were analysed and classified as mild, moderate or severe PSD by gross pathology and histological assessment. The level of expression of 26 immune-associated genes including cytokines, immunoglobulins and cell markers were examined by TaqMan qPCR assays. A significant up-regulation of the gene expression of C3, lysozyme, IL-1ß and T-bet and down-regulation of TGFß and TLR3 was observed in PSD fish compared to control fish. MHCI gene expression was up-regulated only in severe PSD lesions. Histological examinations of the epidermis showed a significant increase in the number of eosinophil cells and dendritic melanocytes in PSD fish. In severe lesions, mild diffuse lymphocyte infiltration was observed. IgT and CD8 positive cells were detected locally in the skin of PSD fish by in situ hybridisation (ISH), however, the gene expression of those genes was not different from control fish. Total IgM in serum of diseased animals was not different from control fish, measured by a sandwich ELISA, nor was significant up regulation of IgM gene expression in PSD lesions observed. Taken together, these results show activation of the complement pathway, up-regulation of a Th17 type response and eosinophilia during PSD. This is typical of a response to extracellular pathogens (i.e. bacteria and parasites) and allergens, commonly associated with acute dermatitis.


Asunto(s)
Epidermis/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Oncorhynchus mykiss , Enfermedades de la Piel/veterinaria , Animales , Epidermis/anatomía & histología , Femenino , Enfermedades de los Peces/etiología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Enfermedades de la Piel/etiología , Enfermedades de la Piel/inmunología
18.
J Invertebr Pathol ; 154: 109-116, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29555081

RESUMEN

A parasite exhibiting Oomycete-like morphology and pathogenesis was isolated from discoloured eggs of the European lobster (Homarus gammarus) and later found in gill tissues of adults. Group-specific Oomycete primers were designed to amplify the 18S ribosomal small subunit (SSU), which initially identified the organism as the same as the 'Haliphthoros' sp. NJM 0034 strain (AB178865.1) previously isolated from abalone (imported from South Australia to Japan). However, in accordance with other published SSU-based phylogenies, the NJM 0034 isolate did not group with other known Haliphthoros species in our Maximum Likelihood and Bayesian phylogenies. Instead, the strain formed an orphan lineage, diverging before the separation of the Saprolegniales and Pythiales. Based upon 28S large subunit (LSU) phylogeny, our own isolate and the previously unidentified 0034 strain are both identical to the abalone pathogen Halioticida noduliformans. The genus shares morphological similarities with Haliphthoros and Halocrusticida and forms a clade with these in LSU phylogenies. Here, we confirm the first recorded occurrence of H. noduliformans in European lobsters and associate its presence with pathology of the egg mass, likely leading to reduced fecundity.


Asunto(s)
Nephropidae/parasitología , Oomicetos/aislamiento & purificación , Animales , Teorema de Bayes , Branquias/parasitología , Funciones de Verosimilitud , Oomicetos/clasificación , Óvulo/parasitología , Filogenia
19.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29150518

RESUMEN

One of the fastest growing fisheries in the UK is the king scallop (Pecten maximus L.), also currently rated as the second most valuable fishery. Mass mortality events in scallops have been reported worldwide, often with the causative agent(s) remaining uncharacterized. In May 2013 and 2014, two mass mortality events affecting king scallops were recorded in the Lyme Bay marine protected area (MPA) in Southwest England. Histopathological examination showed gill epithelial tissues infected with intracellular microcolonies (IMCs) of bacteria resembling Rickettsia-like organisms (RLOs), often with bacteria released in vascular spaces. Large colonies were associated with cellular and tissue disruption of the gills. Ultrastructural examination confirmed the intracellular location of these organisms in affected epithelial cells. The 16S rRNA gene sequences of the putative IMCs obtained from infected king scallop gill samples, collected from both mortality events, were identical and had a 99.4% identity to 16S rRNA gene sequences obtained from "Candidatus Endonucleobacter bathymodioli" and 95% with Endozoicomonas species. In situ hybridization assays using 16S rRNA gene probes confirmed the presence of the sequenced IMC gene in the gill tissues. Additional DNA sequences of the bacterium were obtained using high-throughput (Illumina) sequencing, and bioinformatic analysis identified over 1,000 genes with high similarity to protein sequences from Endozoicomonas spp. (ranging from 77 to 87% identity). Specific PCR assays were developed and applied to screen for the presence of IMC 16S rRNA gene sequences in king scallop gill tissues collected at the Lyme Bay MPA during 2015 and 2016. There was 100% prevalence of the IMCs in these gill tissues, and the 16S rRNA gene sequences identified were identical to the sequence found during the previous mortality event.IMPORTANCE Molluscan mass mortalities associated with IMCs have been reported worldwide for many years; however, apart from histological and ultrastructural characterization, characterization of the etiological agents is limited. In the present work, we provide detailed molecular characterization of an Endozoicomonas-like organism (ELO) associated with an important commercial scallop species.


Asunto(s)
Gammaproteobacteria/genética , Pecten/microbiología , Mariscos/microbiología , Animales , ADN Bacteriano/genética , Inglaterra , Gammaproteobacteria/aislamiento & purificación , Branquias/microbiología , Branquias/patología , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/mortalidad , Metagenómica , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Rickettsia/genética
20.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28199699

RESUMEN

Bacteria from the family Flavobacteriaceae often show low susceptibility to antibiotics. With the exception of two Chryseobacterium spp. isolates that were positive for the florfenicol resistance gene floR, no clinical resistance genes were identified by microarray in 36 Flavobacteriaceae isolates from salmonid fish that could grow in ≥ 4 mg/L florfenicol. Whole genome sequence analysis of the floR positive isolates revealed the presence of a region that contained the antimicrobial resistance genes floR, a tet(X) tetracycline resistance gene, a streptothricin resistance gene and a chloramphenicol acetyltransferase gene. In silico analysis of 377 published genomes for Flavobacteriaceae isolates from a range of sources confirmed that well-characterised resistance gene cassettes were not widely distributed in bacteria from this group. Efflux pump-mediated decreased susceptibility to a range of antimicrobials was confirmed in both floR positive isolates using an efflux pump inhibitor (phenylalanine-arginine ß-naphthylamide) assay. The floR isolates possessed putative virulence factors, including production of siderophores and haemolysins, and were mildly pathogenic in rainbow trout. Results support the suggestion that, despite the detection of floR, susceptibility to antimicrobials in Flavobacteriaceae is mostly mediated via intrinsic mechanisms rather than the horizontally acquired resistance genes more normally associated with Gram-negative bacterial pathogens such as Enterobacteriaceae.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Chryseobacterium/efectos de los fármacos , Chryseobacterium/genética , Oncorhynchus mykiss/microbiología , Tianfenicol/análogos & derivados , Acetiltransferasas/genética , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Cloranfenicol O-Acetiltransferasa/genética , Chryseobacterium/aislamiento & purificación , Genoma Bacteriano/genética , Proteínas Hemolisinas/biosíntesis , Humanos , Pruebas de Sensibilidad Microbiana , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Reacción en Cadena de la Polimerasa , Sideróforos/biosíntesis , Resistencia a la Tetraciclina/genética , Tianfenicol/farmacología , Factores de Virulencia/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA