Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125605

RESUMEN

We investigated the association between the SDF-1-3' (c801G > A) variant and the development of diabetic macular edema (DME) or proliferative diabetic retinopathy (PDR) in a Hungarian cohort. SDF-1-3' (c801G > A) was genotyped in 103 patients with diabetic retinopathy and 31 age- and sex-matched non-diabetic controls. Central retinal and choroidal thickness was measured by swept-source optical coherence tomography. The distribution of heterozygous and homozygous SDF-1-3' (c801G > A) genotypes was similar in diabetic and control subjects. The SDF-3'(c801AA) genotype was associated with DME (n = 94 eyes, allele distribution p = 0.006, genotype distribution p = 0.01 OR: 2.48, 95% CL: 1.21-5.08) in both univariable and multivariable modelling, independent of duration and type of diabetes, HbA1C, hypertension and microalbuminuria (p = 0.03). DME occurred earlier in patients carrying the SDF-1 (c801A) allele (Kaplan-Meier analysis, log-rank test p = 0.02). A marginally significant association was found between the presence of the SDF-1 (c801A) allele and the development of PDR (n = 89 eyes, p = 0.06). The SDF-1-3' (c801A) allele also showed a correlation with central retinal (p = 0.006) and choroidal (p = 0.08) thickness. SDF-1-3' (c801G > A) is involved in the development of macular complications in DM independent of critical clinical factors, suggesting that SDF-1 may be a future therapeutic target for high-risk patients, especially those carrying the SDF-1 (c801A) allele.


Asunto(s)
Quimiocina CXCL12 , Retinopatía Diabética , Humanos , Quimiocina CXCL12/genética , Retinopatía Diabética/genética , Femenino , Masculino , Hungría , Persona de Mediana Edad , Anciano , Alelos , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Genotipo , Estudios de Casos y Controles , Tomografía de Coherencia Óptica , Edema Macular/genética
2.
Am J Physiol Renal Physiol ; 327(2): F314-F326, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38932694

RESUMEN

Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging, and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O2; 20% CO2 in N2 for 15 min) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), hypoxic and heat shock factors (hypoxia-inducible factor-1α, heat shock factor-1, and heat shock protein-27), proinflammatory cytokines (interleukin-1ß, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1), and fibrotic markers (transforming growth factor-ß, connective tissue growth factor, and fibronectin) promptly after PA. Moreover, a machine learning model was identified through random forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic, heat shock, proinflammatory, and profibrotic response after renal IR injury compared with controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. In addition, the parameters identified through random forest analysis provide a robust foundation for future biomarker research in the context of PA.NEW & NOTEWORTHY This article demonstrates that perinatal asphyxia leads to subclinical kidney injury that permanently increases renal susceptibility to subsequent ischemic injury. We identified major molecular pathways involved in perinatal asphyxia-induced renal complications, highlighting potential targets of therapeutic approaches. In addition, random forest analysis revealed a model that classifies perinatal asphyxia with 95.5% accuracy that may provide a strong foundation for further biomarker research. These findings underscore the importance of multiorgan follow-up for perinatal asphyxia-affected patients.


Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Riñón , Ratas Wistar , Daño por Reperfusión , Animales , Masculino , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Riñón/patología , Riñón/metabolismo , Fibrosis , Asfixia Neonatal/metabolismo , Asfixia Neonatal/complicaciones , Asfixia Neonatal/patología , Animales Recién Nacidos , Ratas , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Citocinas/metabolismo , Factores de Edad , Mediadores de Inflamación/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38069366

RESUMEN

Diabetic cardiovascular complications are associated with up to 50% mortality, and current therapies are not effective enough. Renin-angiotensin-aldosterone system inhibitors (RAASis) are the standard of care for diabetic patients with hypertension and albuminuria. Based on our previous studies reporting the renoprotective effects of low-dose RAASis, here, we hypothesized that low-dose RAASi treatment has cardioprotective and antifibrotic benefits in type 1 diabetes mellitus (T1DM). After five weeks of T1DM, adult male Wistar rats received low doses of ramipril, losartan, or eplerenone for two weeks. Heart rate, blood pressure, and pulse wave velocity (PWV) were recorded. Aortic intima-media thickness (IMT), collagen accumulation, and myocardial fibrosis were assessed. All RAASis reduced PWV elevation, prevented the progression of myocardial fibrosis, and normalized B-type natriuretic peptide, troponin I, and fibroblast growth factor 23 levels without affecting blood pressure. Interestingly, only eplerenone reversed the decline in Klotho levels and reduced IMT and fibrosis in the media of the aorta. Our comparative analysis suggests that mineralocorticoid receptor antagonists, particularly eplerenone, may offer superior efficacy in halting both the arterial and the myocardial injuries in T1DM compared to angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor blockers.


Asunto(s)
Cardiomiopatías , Complicaciones de la Diabetes , Diabetes Mellitus Tipo 1 , Animales , Masculino , Ratas , Grosor Intima-Media Carotídeo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Eplerenona/farmacología , Fibrosis , Análisis de la Onda del Pulso , Ratas Wistar , Sistema Renina-Angiotensina
4.
Medicina (Kaunas) ; 59(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37893413

RESUMEN

Background and Objectives: Progressive supranuclear palsy (PSP) is a neurodegenerative disease, a tauopathy, which results in a wide clinical spectrum of neurological symptoms. The diagnosis is mostly based on clinical signs and neuroimaging; however, possible biomarkers for screening have been under investigation, and the role of the gut microbiome is unknown. The aim of our study was to identify potential blood biomarkers and observe variations in the gut microbiome within a PSP discordant monozygotic twin pair. Materials and Methods: Anthropometric measurements, neuropsychological tests, and the neurological state were evaluated. Blood was collected for metabolic profiling and for the detection of neurodegenerative and vascular biomarkers. Both the gut microbiome and brain MRI results were thoroughly examined. Results: We found a relevant difference between alpha-synuclein levels and moderate difference in the levels of MMP-2, MB, Apo-A1, Apo-CIII, and Apo-H. With respect to the ratios, a small difference was observed for ApoA1/SAA and ApoB/ApoA1. Using a microbiome analysis, we also discovered a relative dysbiosis, and the MRI results revealed midbrain and frontoparietal cortical atrophy along with a reduction in overall brain volumes and an increase in white matter lesions in the affected twin. Conclusions: We observed significant differences between the unaffected and affected twins in some risk factors and blood biomarkers, along with disparities in the gut microbiome. Additionally, we detected abnormalities in brain MRI results and alterations in cognitive functions.


Asunto(s)
Enfermedades Neurodegenerativas , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Imagen por Resonancia Magnética/métodos , Factores de Riesgo , Biomarcadores
5.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511389

RESUMEN

Kidney transplantation is the preferred treatment for patients with end-stage kidney disease. Maintaining organ viability between donation and transplantation, as well as minimizing ischemic injury, are critically important for long-term graft function and survival. Moreover, the increasing shortage of transplantable organs is a considerable problem; thus, optimizing the condition of grafts is a pivotal task. Here, rodent models of kidney transplantation and cold storage were used to demonstrate that supplementation of a preservation solution with Sigma-1 receptor (S1R) agonist fluvoxamine (FLU) reduces cold and warm ischemic injury. Post-transplant kidney function was improved, histological injury was mitigated, and mRNA expression of two tubular injury markers-kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin-was robustly reduced. In addition, renal inflammation was diminished, as shown by reduced leukocyte infiltration and pro-inflammatory cytokine expression. In the cold ischemia model, FLU ameliorated structural injury profoundly after 2 h as well as 24 h. The reduced number of TUNEL-positive and Caspase 3-positive cells suggests the anti-apoptotic effect of FLU. None of these beneficial effects of FLU were observed in S1R-/- mice. Of note, organ damage in FLU-treated kidneys after 24 h of cold storage was similar to just 2 h without FLU. These results indicate that S1R agonists can prolong storage time and have great potential in improving organ preservation and in alleviating the problem of organ shortages.


Asunto(s)
Trasplante de Riñón , Daño por Reperfusión , Ratones , Animales , Trasplante de Riñón/efectos adversos , Trasplante de Riñón/métodos , Roedores , Daño por Reperfusión/patología , Riñón/patología , Preservación de Órganos/métodos , Isquemia/patología , Frío , Receptor Sigma-1
6.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511406

RESUMEN

Primary open-angle glaucoma remains a global issue, lacking a definitive treatment. Increased intraocular pressure (IOP) is considered the primary risk factor of the disease and it can be caused by fibrotic-like changes in the trabecular meshwork (TM) such as increased tissue stiffness and outflow resistance. Previously, we demonstrated that the sigma-1 receptor (S1R) agonist fluvoxamine (FLU) has anti-fibrotic properties in the kidney and lung. In this study, the localization of the S1R in TM cells was determined, and the anti-fibrotic efficacy of FLU was examined in both mouse and human TM cells. Treatment with FLU reduced the F-actin rearrangement, inhibited cell proliferation and migration induced by the platelet-derived growth factor and decreased the levels of fibrotic proteins. The protective role of the S1R in fibrosis was confirmed by a more pronounced increase in alpha smooth muscle actin and F-actin bundle and clump formation in primary mouse S1R knockout TM cells. Furthermore, FLU demonstrated its protective effects by increasing the production of nitric oxide and facilitating the degradation of the extracellular matrix through the elevation of cathepsin K. These findings suggest that the S1R could be a novel target for the development of anti-fibrotic drugs and offer a new therapeutic approach for glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Ratones , Animales , Malla Trabecular/metabolismo , Fluvoxamina/farmacología , Glaucoma de Ángulo Abierto/metabolismo , Actinas/metabolismo , Glaucoma/metabolismo , Células Cultivadas , Fibrosis , Presión Intraocular , Receptor Sigma-1
7.
Life (Basel) ; 13(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511956

RESUMEN

The trabecular meshwork (TM) route is the principal outflow egress of the aqueous humor. Actin cytoskeletal remodeling in the TM and extracellular matrix (ECM) deposition increase TM stiffness, outflow resistance, and elevate intraocular pressure (IOP). These alterations are strongly linked to transforming growth factor-ß2 (TGFß2), a known profibrotic cytokine that is markedly elevated in the aqueous humor of glaucomatous eyes. Sigma-1 receptor (S1R) has been shown to have neuroprotective effects in the retina, but data are lacking about its role in the TM. In this study, we identified the presence of S1R in mouse TM tissue and investigated the effect of an S1R agonist fluvoxamine (FLU) on TGFß2-induced human TM cells regarding cell proliferation; ECM-related functions, including F-actin reorganization; and the accumulation of ECM elements. TGFß2 increased the proliferation, cytoskeletal remodeling, and protein levels of fibronectin, collagen type IV, and connective tissue growth factor, and decreased the level of matrix metalloproteinase-2. Most importantly, FLU reversed all these effects of TGFß2, suggesting that S1R agonists could be potential candidates for preserving TM function and thus maintaining normal IOP.

8.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175496

RESUMEN

Metabolic diseases, particularly diabetes mellitus (DM), are significant global public health concerns. Despite the widespread use of standard-of-care therapies, cardiovascular disease (CVD) remains the leading cause of death among diabetic patients. Early and evidence-based interventions to reduce CVD are urgently needed. Large clinical trials have recently shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) ameliorate adverse cardiorenal outcomes in patients with type 2 DM. These quite unexpected positive results represent a paradigm shift in type 2 DM management, from the sole importance of glycemic control to the simultaneous improvement of cardiovascular outcomes. Moreover, SGLT2i is also found to be cardio- and nephroprotective in non-diabetic patients. Several mechanisms, which may be potentially independent or at least separate from the reduction in blood glucose levels, have already been identified behind the beneficial effect of these drugs. However, there is still much to be understood regarding the exact pathomechanisms. This review provides an overview of the current literature and sheds light on the modes of action of novel antidiabetic drugs, focusing on inflammation, oxidative stress, and fibrosis.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Hipoglucemiantes/efectos adversos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Fibrosis , Estrés Oxidativo , Receptor del Péptido 1 Similar al Glucagón/agonistas
9.
PLoS One ; 17(2): e0263285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176041

RESUMEN

INTRODUCTION: Cardiovascular disease (CVD) is two to five times more prevalent in diabetic patients and is the leading cause of death. Therefore, identification of novel therapeutic strategies that reduce the risk of CVD is a research priority. Clinical trials showed that reduction in the relative risk of heart failure by sodium-glucose cotransporter 2 inhibitors (SGLT2i) are partly beyond their glucose lowering effects, however, the molecular mechanisms are still elusive. Here we investigated the role of SGLT2i dapagliflozin (DAPA) in the prevention of diabetes-induced cardiovascular complications. METHODS: Type 1 diabetes was induced with streptozotocin (65 mg/bwkg, ip.) in adult, male Wistar rats. Following the onset of diabetes rats were treated for six weeks with DAPA (1 mg/bwkg/day, po.). RESULTS: DAPA decreased blood glucose levels (D: 37±2.7 vs. D+DAPA: 18±5.6 mmol/L; p<0.05) and prevented metabolic decline. Aortic intima-media thickening was mitigated by DAPA. DAPA abolished cardiac hypertrophy, and myocardial damage. Cardiac inflammation and fibrosis were also moderated after DAPA treatment. CONCLUSIONS: These data support the preventive and protective role of SGLT2i in diabetes-associated cardiovascular disease. SGLT2i may provide novel therapeutic strategy to hinder the development of cardiovascular diseases in type 1 diabetes, thereby improve the outcomes.


Asunto(s)
Aterosclerosis/prevención & control , Compuestos de Bencidrilo/farmacología , Glucemia/análisis , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucósidos/farmacología , Insuficiencia Cardíaca/prevención & control , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Masculino , Ratas , Ratas Wistar
10.
Amino Acids ; 53(6): 917-928, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34002278

RESUMEN

Lyophilization is a cost-effective method for biological specimen preservation but detailed tissue-specific reference protocols are still lacking. Moreover, data are limited on the long-term stability of proteins and nucleic acids in lyophilized samples.Here, we offer lyophilization protocols for various rat and mouse tissues (kidney, heart, liver, lung, aorta, and skin) coupled with technical hints for optimal sample preparation. We demonstrate that lyophilized samples stored at 4 °C for 20 months can yield protein and RNA of similar quantity and quality to -80 °C storage, while phosphorylated proteins are preserved as well. Freeze-dried and subsequently pulverized samples can provide more consistent, more reliable data especially when investigating focal injuries, such as fibrosis. We developed a protocol for the concentration of biological solutions and achieved 20-times concentration in human peritoneal dialysis effluent solution which enables the previously unattainable detection of proteins in these samples. We established a method for water removal as well as accurate water content measurement of fecal samples, which can be valuable for gut metabolome analysis.Taken together, lyophilization is a valuable tool for the preservation of biological samples with many advantages. We aim to draw attention to the wide range of possibilities offered by freeze drying in pre-clinical or basic research.


Asunto(s)
Biología Molecular/métodos , Manejo de Especímenes , Animales , Liofilización , Humanos , Ratones , Ratas
11.
Methods Mol Biol ; 2216: 3-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33475991

RESUMEN

Renal MRI holds incredible promise for making a quantum leap in improving diagnosis and care of patients with a multitude of diseases, by moving beyond the limitations and restrictions of current routine clinical practice. Clinical and preclinical renal MRI is advancing with ever increasing rapidity, and yet, aside from a few examples of renal MRI in routine use, it is still not good enough. Several roadblocks are still delaying the pace of progress, particularly inefficient education of renal MR researchers, and lack of harmonization of approaches that limits the sharing of results among multiple research groups.Here we aim to address these limitations for preclinical renal MRI (predominantly in small animals), by providing a comprehensive collection of more than 40 publications that will serve as a foundational resource for preclinical renal MRI studies. This includes chapters describing the fundamental principles underlying a variety of renal MRI methods, step-by-step protocols for executing renal MRI studies, and detailed guides for data analysis. This collection will serve as a crucial part of a roadmap toward conducting renal MRI studies in a robust and reproducible way, that will promote the standardization and sharing of data.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Asunto(s)
Biomarcadores/análisis , Enfermedades Renales/clasificación , Enfermedades Renales/patología , Riñón/fisiopatología , Imagen por Resonancia Magnética/métodos , Guías de Práctica Clínica como Asunto/normas , Progresión de la Enfermedad , Humanos , Enfermedades Renales/terapia , Reproducibilidad de los Resultados
12.
Methods Mol Biol ; 2216: 27-44, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33475992

RESUMEN

Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanisms of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide a comprehensive overview of animal models of acute and chronic kidney diseases, highlighting MRI-specific considerations, advantages, and pitfalls, and thus assisting the researcher in experiment planning.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Asunto(s)
Biomarcadores/análisis , Modelos Animales de Enfermedad , Enfermedades Renales/clasificación , Enfermedades Renales/patología , Riñón/fisiopatología , Imagen por Resonancia Magnética/métodos , Animales , Progresión de la Enfermedad , Humanos , Enfermedades Renales/terapia , Reproducibilidad de los Resultados
13.
Methods Mol Biol ; 2216: 45-55, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33475993

RESUMEN

Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanism of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide an overview of the preparation and monitoring of small animals before, during, and after surgical interventions or MR imaging. Standardization of experimental settings such as body temperature or hydration of animals and minimizing pain and distress are essential for diminishing nonexperimental variables as well as for conducting ethical research.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Asunto(s)
Biomarcadores/análisis , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/fisiología , Imagen por Resonancia Magnética/métodos , Monitoreo Fisiológico/métodos , Programas Informáticos , Animales , Riñón/cirugía , Ratones , Ratas
14.
Methods Mol Biol ; 2216: 57-73, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33475994

RESUMEN

Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe test interventions that are used to study the control of renal hemodynamics and oxygenation in experimental animals in the context of kidney-specific control of hemodynamics and oxygenation. The rationale behind the use of the individual tests, the physiological responses of renal hemodynamics and oxygenation, the use in preclinical studies, and the possible application in humans are discussed.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Asunto(s)
Biomarcadores/análisis , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/fisiopatología , Imagen por Resonancia Magnética/métodos , Monitoreo Fisiológico/métodos , Oxígeno/metabolismo , Circulación Renal , Animales , Progresión de la Enfermedad , Hemodinámica , Humanos , Ratones , Consumo de Oxígeno , Ratas , Programas Informáticos
15.
Am J Physiol Renal Physiol ; 319(2): F149-F154, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32567347

RESUMEN

Ischemia-reperfusion injury of the kidney is caused by the sudden and temporary obstruction of blood flow to the organ. Renal ischemia-reperfusion injury is associated with high morbidity and mortality, but effective therapies are lacking. Sexual dimorphism in renal injury has been acknowledged since the 1940s, and the possible role of sex hormones has been intensively investigated in the past decades. Clinical and experimental data demonstrate sexual differences in renal anatomy, physiology, and susceptibility to renal diseases including but not limited to ischemia-reperfusion injury. Some data suggest the protective role of female sex hormones, whereas others highlight the detrimental effect of male hormones in renal ischemia-reperfusion injury. Although the important role of sex hormones is evident, the exact underlying mechanisms remain to be elucidated. This review focuses on collecting the current knowledge about sexual dimorphism of renal ischemia-reperfusion injury, with emphasis on molecular mechanisms and potential novel therapeutic strategies.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Riñón/irrigación sanguínea , Riñón/fisiopatología , Daño por Reperfusión/fisiopatología , Caracteres Sexuales , Animales , Hormonas Esteroides Gonadales/metabolismo , Humanos
16.
Psychoneuroendocrinology ; 118: 104705, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32447176

RESUMEN

The incidence of depression doubles in diabetic patients and is associated with poor outcomes. Studies indicate that renin-angiotensin-aldosterone system inhibitors (RAASi) might relieve depression, however the mechanism of action is not well understood. We recently showed that angiotensin receptor blockers have antidepressant effects in experimental diabetes comorbid depression. Here we investigated whether all types of RAASi exhibit antidepressant and neuroprotective properties. Diabetes was induced by streptozotocin in adult male Wistar rats. After 5 weeks of diabetes, rats were treated per os with non-pressor doses of enalapril, ramipril, spironolactone or eplerenone for 2 weeks. Behavior was evaluated using forced swim test and open field test. Inflammatory response and brain-derived neurotrophic factor (BDNF) signaling were investigated in the hippocampus. Both ACEi and MR antagonists reversed diabetes-induced behavioral despair confirming their antidepressant-like effect. This may occur via alterations in hippocampal cytokine-mediated inflammatory response. Repressed BDNF production was restored by RAASi. Both ACEi and MR antagonists facilitated the BDNF-tropomyosin receptor kinase B-cAMP response element-binding protein signaling pathway as part of their neuroprotective effect. These data highlight the important benefits of ACEi and MR antagonists in the treatment of diabetes-associated depressive symptoms. Our novel findings support the link between diabetes comorbid depression, inflammation and repressed BDNF signaling. RAASi could provide new therapeutic options to improve the outcomes of both disorders.


Asunto(s)
Antihipertensivos/uso terapéutico , Depresión/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Sistema Renina-Angiotensina/efectos de los fármacos , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antihipertensivos/farmacología , Conducta Animal/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Depresión/etiología , Depresión/fisiopatología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/psicología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Enalapril/uso terapéutico , Eplerenona/uso terapéutico , Masculino , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Ramipril/uso terapéutico , Ratas , Ratas Wistar , Espironolactona/uso terapéutico
17.
J Transl Med ; 18(1): 172, 2020 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-32306980

RESUMEN

BACKGROUND: Recently, the role of IL-19, IL-20 and IL-24 has been reported in renal disorders. However, still little is known about their biological role. METHODS: Localization of IL-20RB was determined in human biopsies and in the kidneys of mice that underwent unilateral ureteral obstruction (UUO). Renal Il19, Il20 and Il24 expression was determined in ischemia/reperfusion, lipopolysaccharide, streptozotocin, or UUO induced animal models of kidney diseases. The effects of H2O2, LPS, TGF-ß1, PDGF-B and IL-1ß on IL19, IL20 and IL24 expression was determined in peripheral blood mononuclear cells (PBMCs). The extents of extracellular matrix (ECM) and α-SMA, Tgfb1, Pdgfb, and Ctgf expression were determined in the kidneys of Il20rb knockout (KO) and wild type (WT) mice following UUO. The effect of IL-24 was also examined on HK-2 tubular epithelial cells and NRK49F renal fibroblasts. RESULTS: IL-20RB was present in the renal biopsies of patients with lupus nephritis, IgA and diabetic nephropathy. Amount of IL-20RB increased in the kidneys of mice underwent UUO. The expression of Il19, Il20 and Il24 increased in the animal models of various kidney diseases. IL-1ß, H2O2 and LPS induced the IL19, IL20 and IL24 expression of PBMCs. The extent of ECM, α-SMA, fibronectin, Tgfb1, Pdgfb, and Ctgf expression was lower in the kidney of Il20rb KO compared to WT mice following UUO. IL-24 treatment induced the apoptosis and TGF-ß1, PDGF-B, CTGF expression of HK-2 cells. CONCLUSIONS: Our data confirmed the significance of IL-19, IL-20 and IL-24 in the pathomechanism of renal diseases. Furthermore, we were the first to demonstrate the pro-fibrotic effect of IL-24.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal Crónica , Obstrucción Ureteral , Animales , Modelos Animales de Enfermedad , Fibrosis , Humanos , Peróxido de Hidrógeno , Riñón/patología , Enfermedades Renales/patología , Leucocitos Mononucleares , Ratones , Insuficiencia Renal Crónica/patología , Obstrucción Ureteral/patología
18.
Am J Physiol Renal Physiol ; 318(4): F1017-F1029, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32116017

RESUMEN

Diabetic kidney disease is a worldwide epidemic, and therapies are incomplete. Clinical data suggest that improved renal outcomes by Na+-glucose cotransporter 2 inhibitor (SGLT2i) are partly beyond their antihyperglycemic effects; however, the mechanisms are still elusive. Here, we investigated the effect of the SGLT2i dapagliflozin (DAPA) in the prevention of elevated O-GlcNAcylation and tubular hypoxia as contributors of renal fibrosis. Type 1 diabetes was induced by streptozotocin in adult male Wistar rats. After the onset of diabetes, rats were treated for 6 wk with DAPA or DAPA combined with losartan (LOS). The effect of hyperglycemia was tested in HK-2 cells kept under normal or high glucose conditions. To test the effect of hypoxia, cells were kept in 1% O2 for 2 h. Cells were treated with DAPA or DAPA combined with LOS. DAPA slowed the loss of renal function, mitigated renal tubular injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), and reduced tubulointerstitial fibrosis. DAPA diminished high glucose-induced protein O-GlcNAcylation and moderated the tubular response to hypoxia through the hypoxia-inducible factor pathway. DAPA alone was as effective as combined treatment with LOS in all outcome parameters. These data highlight the role of ameliorated O-GlcNAcylation and diminished tubular hypoxia as important benefits of SGLT2i treatment. Our results support the link between glucose toxicity, tubular hypoxia, and fibrosis, a vicious trio that could be targeted by SGLT2i in kidney diseases of other origins as well.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Glucósidos/farmacología , Glicosilación/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Hipoxia de la Célula , Línea Celular , Colágeno/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Fibronectinas/metabolismo , Fibrosis , Humanos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Masculino , Ratas Wistar , Estreptozocina
19.
Diabetologia ; 62(8): 1501-1513, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31053872

RESUMEN

AIMS/HYPOTHESIS: Diabetes is a worldwide epidemic linked with diverse diseases of the nervous system, including depression. A few studies suggested a connection between renin-angiotensin-aldosterone system blockers and reduced depressive symptoms, although underlying mechanisms are unclear. Here we investigated the antidepressant effect and the mechanisms of action of the angiotensin receptor 1 blocker (ARB) losartan in an experiential model of diabetes-associated depression. METHODS: Experimental diabetes was induced by streptozotocin in adult male Wistar rats. After 5 weeks of diabetes, rats were treated for 2 weeks with a non-pressor oral dose of losartan (20 mg/kg). In protocol 1, cerebrovascular perfusion and glial activation were evaluated by single-photon emission computed tomography-MRI and immunohistochemistry. In protocol 2, behaviour studies were performed (forced swim test and open field test). Hippocampal proinflammatory response and brain-derived neurotrophic factor (BDNF) signalling were also assessed. RESULTS: Here, we show that diabetic rats exhibit depression-like behaviour, which can be therapeutically reversed by losartan. This action of losartan occurs via changes in diabetes-induced neuroinflammatory responses rather than altered cerebral perfusion. We also show that as a part of its protective effect losartan restores BDNF production in astrocytes and facilitates BDNF-tropomyosin receptor kinase B-cAMP response element-binding protein signalling in the diabetic brain. CONCLUSIONS/INTERPRETATION: We identified a novel effect of losartan in the nervous system that may be implemented to alleviate symptoms of diabetes-associated depression. These findings explore a new therapeutic horizon for ARBs as possible antidepressants and suggest that BDNF could be a target of future drug development in diabetes-induced complications.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Complicaciones de la Diabetes/tratamiento farmacológico , Losartán/uso terapéutico , Administración Oral , Animales , Apoptosis , Conducta Animal , Depresión/complicaciones , Complicaciones de la Diabetes/psicología , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Inflamación , Masculino , Ratas , Ratas Wistar , Transducción de Señal
20.
J Neural Transm (Vienna) ; 126(3): 265-278, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30767081

RESUMEN

Cardiovascular (CV) diseases and mood disorders are common public health problems worldwide. Their connections are widely studied, and the role of neurotrophins (NTs) is already supposed in both conditions. However, data in the literature of clinical aspects are sometimes controversial and no reviews are available describing possible associations between CV risk and mood disorders based on NTs. The mostly studied NT is brain-derived neurotrophic factor (BDNF). Decreased level of BDNF is observed in depression and its connection to hypertension has also been demonstrated with affecting the arterial baroreceptors, renin-angiotensin system and endothelial nitric oxide synthase. BDNF was also found to be the predictor of CV outcome in different patient populations. Other types of human NT-s, such as nerve growth factor, neurotrophin 3 and neurotrophin 4 also seem to have both psychopathological and CV connections. Our aim was to overview the present knowledge in this area, demonstrating a new aspect of the associations between mood disorders and CV diseases through the mediation of NTs. These findings might enlighten new psychosomatic connections and suggest new therapeutic targets that are beneficial both in respect of mood disorders and CV pathology.


Asunto(s)
Enfermedades Cardiovasculares/complicaciones , Trastornos del Humor/complicaciones , Factores de Crecimiento Nervioso/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos , Trastornos del Humor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA