Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Bioresour Technol ; : 131445, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278365

RESUMEN

Carbon dioxide (CO2) biosynthesis is a promising alternative to traditional chemical synthesis. However, its application in engineering is hampered by poor gas mass transfer rates. Pressurization is an effective method to enhance mass transfer and increase synthesis yield, although the underlying mechanisms remain unclear. This review examines the effects of high pressure on CO2 biosynthesis, elucidating the mechanisms behind yield enhancement from three perspectives: microbial physiological traits, gas mass transfer and synthetic pathways. The critical role of pressurization in improving microbial activity and gas transfer efficiency is emphasized, with particular attention to maintaining pressure within microbial tolerance limits to maximize yield without compromising cell structure integrity.

2.
Water Res ; 266: 122359, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39232255

RESUMEN

The consistent presence of p-chloronitrobenzene (p-CNB) in groundwater has raised concerns regarding its potential harm. In this study, we developed a biocathode-anode cascade system in a permeable reactive barrier (BACP), integrating biological electrochemical system (BES) with permeable reactive barrier (PRB), to address the degradation of p-CNB in the groundwater. BACP efficiently accelerated the formation of biofilms on both the anode and cathode using the polar periodical reversal method, proving more conducive to biofilm development. Notably, BACP demonstrated a remarkable p-CNB removal efficiency of 94.76 % and a dechlorination efficiency of 64.22 % under a voltage of 0.5 V, surpassing the results achieved through traditional electrochemical and biological treatment processes. Cyclic voltammetric results highlighted the primary contributing factor as the synergistic effect between the bioanode and biocathode. It is speculated that this system primarily relies on bioelectrocatalytic reduction as the predominant process for p-CNB removal, followed by subsequent dechlorination. Furthermore, electrochemical and microbiological tests demonstrated that BACP exhibited optimal electron transfer efficiency and selective microbial enrichment ability under a voltage of 0.3-0.5 V. Additionally, we investigated the operational strategy for initiating BACP in engineering applications. The results showed that directly introducing BACP technology effectively enhanced microbial film formation and pollutant removal performance.

3.
Angew Chem Int Ed Engl ; : e202412740, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107257

RESUMEN

The production of ammonia (NH3) from nitrogen sources involves competitive adsorption of different intermediates and multiple electron and proton transfers, presenting grand challenges in catalyst design. In nature nitrogenases reduce dinitrogen to NH3 using two component proteins, in which electrons and protons are delivered from Fe protein to the active site in MoFe protein for transfer to the bound N2. We draw inspiration from this structural enzymology, and design a two-component metal-sulfur-carbon (M-S-C) catalyst composed of sulfur-doped carbon-supported ruthenium (Ru) single atoms (SAs) and nanoparticles (NPs) for the electrochemical reduction of nitrate (NO3-) to NH3. The catalyst demonstrates a remarkable NH3 yield rate of ~37 mg L-1 h-1 and a Faradaic efficiency of ~97% for over 200 hours, outperforming those consisting solely of SAs or NPs, and even surpassing most reported electrocatalysts. Our experimental and theoretical investigations reveal the critical role of Ru SAs with the coordination of S in promoting the formation of the HONO intermediate and the subsequent reduction reaction over the NP-surface nearby. This study proves a better understanding of how M-S-Cs act as a synthetic nitrogenase mimic during ammonia synthesis, and contributes to the future mechanism-based catalyst design.

4.
Water Res ; 261: 121992, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971076

RESUMEN

Electroactive biofilm (EAB) has garnered significant attention due to its effectiveness in pollutant remediation, electricity generation, and chemical synthesis. However, achieving precise control over the rapid formation of EAB presents challenges for the practical implementation of bioelectrochemical technology. In this study, we investigated the regulation of EAB formation by manipulating applied electric potential. We developed a modified XDLVO model for the applied electric field and quantitatively assessed the feasibility of existing rapid formation strategies for EAB. Our results revealed that electrostatic (EL) force significantly influenced EAB formation in the presence of the applied electric field, with the potential difference between the electrode and the microbial solution being the primary determinant of EL force. Compared to -0.2 V and 0 V vs.Ag/AgCl, EAB exhibited the highest electrochemical performance at 0.2 V vs.Ag/AgCl, with a maximum current density of 6.044 ± 0.10 A/m2, surpassing that at -0.2 V vs.Ag/AgCl and 0 V vs.Ag/AgCl by 1.73 times and 1.31 times, respectively. Furthermore, EAB demonstrated the highest biomass accumulation, measuring a thickness of 25 ± 2 µm at 0.2 V vs. Ag/AgCl, representing increases of 1.67 and 1.25 times compared to -0.2 V vs.Ag/AgCl and 0 V vs.Ag/AgCl, respectively. The strong electrostatic attraction under the anodic potential promoted the formation of a monolayer of biofilm. Additionally, the hydrophilicity and hydrophobicity of the biofilm were altered following inversion culture. The Lewis acid-base (AB) attraction offset the electrostatic repulsion caused by negative charges, it is beneficial for the formation of biofilms. This study, for the first time, elucidated the difference in the formation of cathode and anode biofilm from a thermodynamic perspective in the context of electric field introduction, laying the theoretical foundation for the directional regulation of the rapid formation of typical electroactive biofilms.


Asunto(s)
Biopelículas , Termodinámica , Electrodos , Electricidad , Electricidad Estática
5.
Cell Rep ; 43(7): 114453, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38985677

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infection, a major cause of hospital- and community-acquired pneumonia, still has a high mortality rate. Extracellular vesicles (EVs), as crucial mediators of intercellular communication, have a significant impact on infectious diseases. However, the role of EVs from alveolar macrophages (AMs) in MRSA pneumonia remains unclear. We report that AMs phagocytose MRSA and release more EVs in mice with MRSA pneumonia. EVs from AMs harboring phagocytosed MRSA exhibit significant proinflammatory effects and induce necroptosis by delivering tumor necrosis factor α (TNF-α) and miR-146a-5p. Mechanically, the upregulated miR-146a-5p in these EVs enhances the phosphorylation of RIPK1, RIPK3, and MLKL by targeting TNF receptor-associated factor 6 (TRAF6), thereby promoting TNF-α-induced necroptosis. The combination of a TNF-α antagonist and an miR-146a-5p antagomir effectively improves the outcomes of mice with MRSA pneumonia. Overall, we reveal the pronecrotic effect of EVs from MRSA-infected AMs and provide a promising target for the prevention and treatment of MRSA pneumonia.


Asunto(s)
Vesículas Extracelulares , Macrófagos Alveolares , Staphylococcus aureus Resistente a Meticilina , MicroARNs , Necroptosis , Animales , Vesículas Extracelulares/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Ratones , MicroARNs/metabolismo , MicroARNs/genética , Fagocitosis , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/metabolismo , Masculino , Humanos
6.
Environ Res ; 259: 119517, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964585

RESUMEN

This paper aims to develop a flow-through electrochemical system with a series of graphene nanoparticles loaded PbO2 reactive electrochemical membrane electrodes (GNPs-PbO2 REMs) on porous Ti substrates with pore sizes of 100, 150, 300 and 600 µm, and apply them to treat antibiotic wastewater. Among them, the GNPs-PbO2 with Ti substrate of 150 µm (Ti-150/GNPs-PbO2) had superior electrochemical degradation performance over the REMs with other pore sizes due to its smaller crystal size, larger electrochemical active specific area, lower charge-transfer impedance and larger oxygen evolution potential. Under the relatively optimized conditions of initial pH of 5, current density of 15 mA cm-2, and membrane flux of 4.20 m3 (m2·h)-1, the Ti-150/GNPs-PbO2 REM realized 99.34% of benzylpenicillin sodium (PNG) removal with an EE/O of 6.52 kWh m-3. Its excellent performance could be explained as the increased mass transfer. Then three plausible PNG degradation pathways in the flow-through electrochemical system were proposed, and great stability and safety of Ti-150/GNPs-PbO2 REM were demonstrated. Moreover, a single-pass Ti-150/GNPs-PbO2 REM system with five-modules in series was designed, which could consistently treat real antibiotic wastewater in compliance with disposal requirements of China. Thus, this study evidenced that the flow-through electrochemical system with the Ti-150/GNPs-PbO2 REM is an efficient alternative for treating antibiotic wastewater.


Asunto(s)
Antibacterianos , Técnicas Electroquímicas , Electrodos , Grafito , Oxidación-Reducción , Óxidos , Aguas Residuales , Contaminantes Químicos del Agua , Grafito/química , Antibacterianos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Óxidos/química , Técnicas Electroquímicas/métodos , Plomo/química , Membranas Artificiales , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
7.
PLoS One ; 19(5): e0304601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820310

RESUMEN

Both clinical and animal studies demonstrated that seizure-induced respiratory arrest (S-IRA) contributes importantly to sudden unexpected death in epilepsy (SUDEP). It has been shown that enhancing serotonin (5-HT) function relieves S-IRA in animal models of SUDEP, including DBA/1 mice. Direct activation of 5-HT3 and 5-HT4 receptors suppresses S-IRA in DBA/1 mice, indicating that these receptors are involved in S-IRA. However, it remains unknown if other subtypes of 5-HT receptors are implicated in S-IRA in DBA/1 mice. In this study, we investigated the action of an agonist of the 5-HT1A (8-OH-DPAT), 5-HT2A (TCB-2), 5-HT2B (BW723C86), 5-HT2C (MK-212), 5-HT6 (WAY-208466) and 5-HT7 (LP-211) receptor on S-IRA in DBA/1 mice. An agonist of the 5-HT receptor or a vehicle was intraperitoneally administered 30 min prior to acoustic simulation, and the effect of each drug/vehicle on the incidence of S-IRA was videotaped for offline analysis. We found that the incidence of S-IRA was significantly reduced by TCB-2 at 10 mg/kg (30%, n = 10; p < 0.01, Fisher's exact test) but was not altered by other agonists compared with the corresponding vehicle controls in DBA/1 mice. Our data demonstrate that 5-HT2A receptors are implicated in S-IRA, and 5-HT1A, 5-HT2B, 5-HT2C, 5-HT6 and 5-HT7 receptors are not involved in S-IRA in DBA/1 mice.


Asunto(s)
Ratones Endogámicos DBA , Receptores de Serotonina , Convulsiones , Animales , Receptores de Serotonina/metabolismo , Convulsiones/metabolismo , Ratones , Masculino , Agonistas de Receptores de Serotonina/farmacología , Muerte Súbita e Inesperada en la Epilepsia/etiología , Modelos Animales de Enfermedad
8.
Pharmacol Res ; 205: 107244, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821149

RESUMEN

Doxorubicin (Dox) is an anti-tumor drug with a broad spectrum, whereas the cardiotoxicity limits its further application. In clinical settings, liposome delivery vehicles are used to reduce Dox cardiotoxicity. Here, we substitute extracellular vesicles (EVs) for liposomes and deeply investigate the mechanism for EV-encapsulated Dox delivery. The results demonstrate that EVs dramatically increase import efficiency and anti-tumor effects of Dox in vitro and in vivo, and the efficiency increase benefits from its unique entry pattern. Dox-loading EVs repeat a "kiss-and-run" motion before EVs internalization. Once EVs touch the cell membrane, Dox disassociates from EVs and directly enters the cytoplasm, leading to higher and faster Dox import than single Dox. This unique entry pattern makes the adhesion between EVs and cell membrane rather than the total amount of EV internalization the key factor for regulating the Dox import. Furthermore, we recognize ICAM1 as the molecule mediating the adhesion between EVs and cell membranes. Interestingly, EV-encapsulated Dox can induce ICAM1 expression by irritating IFN-γ and TNF-α secretion in TME, thereby increasing tumor targeting of Dox-loading EVs. Altogether, EVs and EV-encapsulated Dox synergize via ICAM1, which collectively enhances the curative effects for tumor treatment.


Asunto(s)
Antibióticos Antineoplásicos , Doxorrubicina , Vesículas Extracelulares , Molécula 1 de Adhesión Intercelular , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Animales , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones , Femenino , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Adhesión Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Ratones Desnudos , Factor de Necrosis Tumoral alfa/metabolismo
9.
Environ Res ; 257: 119254, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815715

RESUMEN

In recent years, increasing demand for inland river water quality precision management has heightened the necessity for real-time, rapid, and continuous monitoring of water conditions. By analyzing the optical properties of water bodies remotely, unmanned aerial vehicle (UAV) hyperspectral imaging technology can assess water quality without direct contact, presenting a novel method for monitoring river conditions. However, there are currently some challenges to this technology that limit the promotion application of this technology, such as underdeveloped sensor calibration, atmospheric correction algorithms, and limitations in modeling non-water color parameters. This article evaluates the advantages and disadvantages of traditional sensor calibration methods and considers factors like sensor aging and adverse weather conditions that impact calibration accuracy. It suggests that future improvements should target hardware enhancements, refining models, and mitigating external interferences to ensure precise spectral data acquisition. Furthermore, the article summarizes the limitations of various traditional atmospheric correction methods, such as complex computational requirements and the need for multiple atmospheric parameters. It discusses the evolving trends in this technology and proposes streamlining atmospheric correction processes by simplifying input parameters and establishing adaptable correction algorithms. Simplifying these processes could significantly enhance the accuracy and feasibility of atmospheric correction. To address issues with the transferability of water quality inversion models regarding non-water color parameters and varying hydrological conditions, the article recommends exploring the physical relationships between spectral irradiance, solar zenith angle, and interactions with water constituents. By understanding these relationships, more accurate and transferable inversion models can be developed, improving the overall effectiveness of water quality assessment. By leveraging the sensitivity and versatility of hyperspectral sensors and integrating interdisciplinary approaches, a comprehensive database for water quality assessment can be established. This database enables rapid, real-time monitoring of non-water color parameters which offers valuable insights for the precision management of inland river water quality.


Asunto(s)
Monitoreo del Ambiente , Ríos , Calidad del Agua , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación , Ríos/química , Dispositivos Aéreos No Tripulados , Imágenes Hiperespectrales/métodos , Tecnología de Sensores Remotos/métodos
10.
Epilepsia ; 65(6): 1791-1800, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593237

RESUMEN

OBJECTIVE: Sudden unexpected death in epilepsy (SUDEP) is an underestimated complication of epilepsy. Previous studies have demonstrated that enhancement of serotonergic neurotransmission suppresses seizure-induced sudden death in evoked seizure models. However, it is unclear whether elevated serotonin (5-HT) function will prevent spontaneous seizure-induced mortality (SSIM), which is characteristic of human SUDEP. We examined the effects of 5-HT-enhancing agents that act by three different pharmacological mechanisms on SSIM in Dravet mice, which exhibit a high incidence of SUDEP, modeling human Dravet syndrome. METHODS: Dravet mice of both sexes were evaluated for spontaneous seizure characterization and changes in SSIM incidence induced by agents that enhance 5-HT-mediated neurotransmission. Fluoxetine (a selective 5-HT reuptake inhibitor), fenfluramine (a 5-HT releaser and agonist), SR 57227 (a specific 5-HT3 receptor agonist), or saline (vehicle) was intraperitoneally administered over an 8-day period in Dravet mice, and the effect of these treatments on SSIM was examined. RESULTS: Spontaneous seizures in Dravet mice generally progressed from wild running to tonic seizures with or without SSIM. Fluoxetine at 30 mg/kg, but not at 20 or 5 mg/kg, significantly reduced SSIM compared with the vehicle control. Fenfluramine at 1-10 mg/kg, but not .2 mg/kg, fully protected Dravet mice from SSIM, with all mice surviving. Compared with the vehicle control, SR 57227 at 20 mg/kg, but not at 10 or 5 mg/kg, significantly lowered SSIM. The effect of these drugs on SSIM was independent of sex. SIGNIFICANCE: Our data demonstrate that elevating serotonergic function by fluoxetine, fenfluramine, or SR 57227 significantly reduces or eliminates SSIM in Dravet mice in a sex-independent manner. These findings suggest that deficits in serotonergic neurotransmission likely play an important role in the pathogenesis of SSIM, and fluoxetine and fenfluramine, which are US Food and Drug Administration-approved medications, may potentially prevent SUDEP in at-risk patients.


Asunto(s)
Epilepsias Mioclónicas , Fenfluramina , Fluoxetina , Convulsiones , Inhibidores Selectivos de la Recaptación de Serotonina , Serotonina , Animales , Ratones , Masculino , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Femenino , Epilepsias Mioclónicas/tratamiento farmacológico , Fenfluramina/farmacología , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Convulsiones/etiología , Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Modelos Animales de Enfermedad , Muerte Súbita e Inesperada en la Epilepsia/prevención & control , Agonistas de Receptores de Serotonina/farmacología , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/genética
11.
Opt Express ; 32(7): 10741-10760, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570941

RESUMEN

Hyperspectral imaging is a critical tool for gathering spatial-spectral information in various scientific research fields. As a result of improvements in spectral reconstruction algorithms, significant progress has been made in reconstructing hyperspectral images from commonly acquired RGB images. However, due to the limited input, reconstructing spectral information from RGB images is ill-posed. Furthermore, conventional camera color filter arrays (CFA) are designed for human perception and are not optimal for spectral reconstruction. To increase the diversity of wavelength encoding, we propose to place broadband encoding filters in front of the RGB camera. In this condition, the spectral sensitivity of the imaging system is determined by the filters and the camera itself. To achieve an optimal encoding scheme, we use an end-to-end optimization framework to automatically design the filters' transmittance functions and optimize the weights of the spectral reconstruction network. Simulation experiments show that our proposed spectral reconstruction network has excellent spectral mapping capabilities. Additionally, our novel joint wavelength encoding imaging framework is superior to traditional RGB imaging systems. We develop the deeply learned filter and conduct actual shooting experiments. The spectral reconstruction results have an attractive spatial resolution and spectral accuracy.

12.
Bioresour Technol ; 401: 130688, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604298

RESUMEN

Nitrate is a common contaminant in high-salinity wastewater, which has adverse effects on both the environment and human health. However, conventional biological treatment exhibits poor denitrification performance due to the high-salinity shock. In this study, an innovative approach using an electrostimulating microbial reactor (EMR) was explored to address this challenge. With a low-voltage input of 1.2 V, the EMR reached nitrate removal kinetic parameter (kNO3-N) of 0.0166-0.0808 h-1 under high-salinities (1.5 %-6.5 %), which was higher than that of the microbial reactor (MR) (0.0125-0.0478 h-1). The mechanisms analysis revealed that low-voltage significantly enhanced microbial salt-in strategy and promoted the secretion of extracellular polymeric substances. Halotolerant denitrification microorganisms (Pseudomonas and Nitratireductor) were also enriched in EMR. Moreover, the EMR achieved a NO3-N removal efficiency of 73.64 % in treating high-salinity wastewater (salinity 4.69 %) over 18-cycles, whereas the MR only reached 54.67 %. In summary, this study offers an innovative solution for denitrification of high-salinity wastewater.


Asunto(s)
Reactores Biológicos , Desnitrificación , Nitratos , Salinidad , Aguas Residuales , Aguas Residuales/química , Nitratos/metabolismo , Purificación del Agua/métodos , Electricidad , Pseudomonas/metabolismo
13.
J Extracell Vesicles ; 13(4): e12426, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532609

RESUMEN

Besides participating in diverse pathological and physiological processes, extracellular vesicles (EVs) are also excellent drug-delivery vehicles. However, clinical drugs modulating EV levels are still lacking. Here, we show that proton pump inhibitors (PPIs) reduce EVs by enhancing macropinocytosis-mediated EV uptake. PPIs accelerate intestinal cell endocytosis of autocrine immunosuppressive EVs through macropinocytosis, thereby aggravating inflammatory bowel disease. PPI-induced macropinocytosis facilitates the clearance of immunosuppressive EVs from tumour cells, improving antitumor immunity. PPI-induced macropinocytosis also increases doxorubicin and antisense oligonucleotides of microRNA-155 delivery efficiency by EVs, leading to enhanced therapeutic effects of drug-loaded EVs on tumours and acute liver failure. Mechanistically, PPIs reduce cytosolic pH, promote ATP6V1A (v-ATPase subunit) disassembly from the vacuolar membrane and enhance the assembly of plasma membrane v-ATPases, thereby inducing macropinocytosis. Altogether, our results reveal a mechanism for macropinocytic regulation and PPIs as potential modulators of EV levels, thus regulating their functions.


Asunto(s)
Vesículas Extracelulares , Inhibidores de la Bomba de Protones , Endocitosis , Pinocitosis , Adenosina Trifosfatasas
14.
Ying Yong Sheng Tai Xue Bao ; 35(2): 523-532, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523111

RESUMEN

Dissolved oxygen (DO) is an important index to evaluate the quality of surface water environments. In recent years, anomalies in DO level have emerged as a major contributor to the decline of surface water quality. These anomalies have triggered several ecological and environmental challenges such as biodiversity loss, the degradation of water environmental quality, intensification of eutrophication, and an exacerbation of the greenhouse effect. Understanding the mechanisms underlying DO anomalies and devising targeted remediation strategies holds paramount importance in the scientific pursuit of water pollution control and aquatic ecosystem restoration. We explored and summarized the fluctuations and abnormal mechanism of DO concentration in surface water, focusing on factors like oxygen solubility, reoxygenation rates, and oxygen consumption by water bodies. We compiled a range of approaches for addressing DO anomalies, including pollution source management, artificial oxygenation, and the reconfiguration of aquatic ecosystems. Ultimately, we underscored the emerging significance of monitoring and regulating DO level in surface waters. Future research in this realm should encompass the establishment of distinct quality standards for surface water, the development of a comprehensive real-time spatial monitoring system for DO levels across watersheds, and the formulation of standardized procedures and technical norms.


Asunto(s)
Ecosistema , Oxígeno , Calidad del Agua , Biodiversidad , Eutrofización , Monitoreo del Ambiente
15.
Opt Express ; 32(3): 3528-3550, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297572

RESUMEN

Image dehazing is a typical low-level visual task. With the continuous improvement of network performance and the introduction of various prior knowledge, the ability of image dehazing is becoming stronger. However, the existing dehazing methods have problems such as the inability to obtain real shooting datasets, unreliable dehazing processes, and the difficulty to deal with complex lighting scenes. To solve these problems, we propose a new haze model combining the optical scattering model and the computer graphics rendering. Based on the new haze model, we propose a high-quality and widely applicable dehazing dataset generation pipeline that does not require paired-data training and prior knowledge. We reconstruct the three-dimensional fog space with array camera and remove haze by thresholding voxel deletion. We use the Unreal Engine 5 to generate simulation datasets and the real shooting in laboratory to verify the effectiveness and the reliability of our generation pipeline. Through our pipeline, we can obtain wonderful dehaze results and dehaze datasets under various complex outdoors lighting conditions. We also propose a dehaze dataset enhancement method based on voxel control. Our pipeline and data enhancement are suitable for the latest algorithm model, these solutions can obtain better visual effects and objective indicators.

16.
Eur Arch Otorhinolaryngol ; 281(4): 1857-1864, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38183455

RESUMEN

OBJECTIVE: This study evaluated the swallowing and voice function of laryngeal cancer patients after Supracricoid Partial Laryngectomy(SCPL), and its influence on quality of life to provide a reference for the selection of surgical methods for laryngeal cancer patients. METHODS: Twenty-one patients who received SCPL between April 2015 and November 2021 were included. Each patient's swallowing function and quality of life were assessed through fiberoptic endoscopic examination of swallowing (FEES) and the M.D. Anderson Dysphagia Inventory (MDADI). Fundamental, jitter, shimmer, maximum phonation time (MPT), and voice handicap index-10 (VHI-10) were performed to assess voice function and voice-related quality of life. RESULTS: The results of the FEES of the 21 patients were as follows: the rates of pharyngeal residue after swallowing solid, semiliquid, and liquid food were 0%, 28.57%, and 38.09%, respectively; the rates of laryngeal infiltration after swallowing solid, semiliquid, and liquid food were 0%, 28.57%, and 4.76%, respectively; and aspiration did not occur in any of the patients. In the evaluation of swallowing quality of life, the mean total MDADI score was 92.6 ± 6.32. The voice function evaluation showed that the mean F0, jitter, shimmer, and MPT values were 156.01 ± 120.87 (HZ), 11.57 ± 6.21 (%), 35.37 ± 14.16 (%) and 7.85 ± 6.08 (s), respectively. The mean total VHI-10 score was 7.14 ± 4.84. CONCLUSION: SCPL provides patients with satisfactory swallowing and voice function. The patients in this study were satisfied with their quality of life in terms of swallowing and voice. SCPL can be used as a surgical method to preserve laryngeal function in patients with laryngeal cancer.


Asunto(s)
Neoplasias Laríngeas , Voz , Humanos , Laringectomía/efectos adversos , Laringectomía/métodos , Deglución , Neoplasias Laríngeas/cirugía , Calidad de Vida
17.
Appl Microbiol Biotechnol ; 108(1): 120, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38212963

RESUMEN

UV photolysis has been recommended as an alternative pretreatment method for the elimination of antibacterial activity of antibiotics against the indicator strain, but the pretreated antibiotic intermediates might not lose their potential to induce antibiotic resistance genes (ARGs) proliferation during subsequent biotreatment processes. The presence of florfenicol (FLO) in wastewater seriously inhibits the metabolic performance of anaerobic sludge microorganisms, especially the positive correlation between UV irradiation doses and ATP content, while it did not significantly affect the organics utilization ability and protein biosynthetic process of aerobic microorganisms. After sufficient UV pretreatment, the relative abundances of floR from genomic or plasmid DNA in subsequent aerobic and anaerobic biotreatment processes both decreased by two orders of magnitude, maintained at the level of the groups without FLO selective pressure. Meanwhile, the abundances of floR under anaerobic condition were always lower than that under aerobic condition, suggesting that anaerobic biotreatment systems might be more suitable for the effective control of target ARGs. The higher abundance of floR in plasmid DNA than in genome also indicated that the potential transmission risk of mobile ARGs should not be ignored. In addition, the relative abundance of intI1 was positively correlated with floR in its corresponding genomic or plasmid DNA (p < 0.05), which also increased the potential horizontal transfer risk of target ARGs. This study provides new insights into the effect of preferential UV photolysis as a pretreatment method for the enhancement of metabolic performance and source control of target ARGs in subsequent biotreatment processes. KEY POINTS: • Sufficient UV photolytic pretreatment efficiently controlled the abundance of floR • A synchronous decrease in abundance of intI1 reduced the risk of horizontal transfer • An appreciable abundance of floR in plasmid DNA was a potential source of total ARGs.


Asunto(s)
Genes Bacterianos , Tianfenicol/análogos & derivados , Aguas Residuales , Antibacterianos/farmacología , ADN
18.
Environ Res ; 241: 117641, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972808

RESUMEN

The presence of excessive concentrations of nitrate poses a threat to both the environment and human health, and the bioelectrochemical systems (BESs) are attractive green technologies for nitrate removal. However, the denitrification efficiency in the BESs is still limited by slow biofilm formation and nitrate removal. In this work, we demonstrate the efficacy of novel combination of magnetite nanoparticles (nano-Fe3O4) with the anode-cathode polarity period reversal (PPR-Fe3O4) for improving the performance of BESs. After only two-week cultivation, the highest cathodic current density (7.71 ± 1.01 A m-2) and NO3--N removal rate (8.19 ± 0.97 g m-2 d-1) reported to date were obtained in the PPR-Fe3O4 process (i.e., polarity period reversal with nano-Fe3O4 added) at applied working voltage of -0.2 and -0.5 V (vs Ag/AgCl) under bioanodic and biocathodic conditions, respectively. Compared with the polarity reversal once only process, the PPR process (i.e., polarity period reversal in the absence of nano-Fe3O4) enhanced bioelectroactivity through increasing biofilm biomass and altering microbial community structure. Nano-Fe3O4 could enhance extracellular electron transfer as a result of promoting the formation of extracellular polymers containing Fe3O4 and reducing charge transfer resistance of bioelectrodes. This work develops a novel biocathode denitrification strategy to achieve efficient nitrate removal after rapid cultivation.


Asunto(s)
Desnitrificación , Nitratos , Humanos , Nitratos/química , Electrodos
19.
Environ Pollut ; 342: 123125, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081379

RESUMEN

Composting is a traditional method of treating organic waste. A growing number of studies have been focusing on accelerating the process to achieve "rapid composting." However, the specific definition and influencing factors of rapid composting remain unclear. Therefore, we aimed to gather more insight into the features of rapid composting by reviewing the literature concerning organic waste composting published in the Web of Science database in the past 5 years. We selected 1615 sample studies with "composting" as the subject word and analyzed the effective composting time stated in each study. We defined rapid composting within 15 days using the median test and quartile method. Based on this definition, we summarized the influencing factors of "rapid composting," namely materials, reactors, temperature, and microorganisms. Finally, we summarized two mechanisms related to humus formation during organic waste rapid composting: high temperature-promoting maturation and microbial driving mechanisms. This literature review compiled useful references to help promote the development of rapid composting technology and related equipment.


Asunto(s)
Compostaje , Suelo , Temperatura
20.
Sci Total Environ ; 916: 169566, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38160823

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) have raised significant concerns within the realm of drinking water due to their widespread presence in various water sources. This prevalence poses potential risks to human health, ecosystems, and the safety of drinking water. However, there is currently a lack of comprehensive reviews that systematically categorize the distribution characteristics and transformation mechanisms of PFASs in drinking water sources. This review aims to address this gap by concentrating on the specific sources of PFASs contamination in Chinese drinking water supplies. It seeks to elucidate the migration and transformation processes of PFASs within each source, summarize the distribution patterns of PFASs in surface and subsurface drinking water sources, and analyze how PFASs molecular structure, solubility, and sediment physicochemical parameters influence their presence in both the water phase and sediment. Furthermore, this review assesses two natural pathways for PFASs degradation, namely photolysis and biodegradation. It places particular emphasis on understanding the degradation mechanisms and the factors that affect the breakdown of PFASs by microorganisms. The ultimate goal is to provide valuable insights for the prevention and control of PFAS contamination and the assurance of drinking water quality.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Ecosistema , Ácidos Alcanesulfónicos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA