RESUMEN
Acute respiratory viral infections, such as pneumovirus and respiratory picornavirus infections, exacerbate disease in COPD and asthma patients. A research program targeting respiratory syncytial virus (RSV) led to the discovery of GS-7682 (1), a novel phosphoramidate prodrug of a 4'-CN-4-aza-7,9-dideazaadenosine C-nucleoside GS-646089 (2) with broad antiviral activity against RSV (EC50 = 3-46 nM), human metapneumovirus (EC50 = 210 nM), human rhinovirus (EC50 = 54-61 nM), and enterovirus (EC50 = 83-90 nM). Prodrug optimization for cellular potency and lung cell metabolism identified 5'-methyl [(S)-hydroxy(phenoxy)phosphoryl]-l-alaninate in combination with 2',3'-diisobutyrate promoieties as being optimal for high levels of intracellular triphosphate formation in vitro and in vivo. 1 demonstrated significant reductions of viral loads in the lower respiratory tract of RSV-infected African green monkeys when administered once daily via intratracheal nebulized aerosol. Together, these findings support additional evaluation of 1 and its analogues as potential therapeutics for pneumo- and picornaviruses.
Asunto(s)
Antivirales , Picornaviridae , Profármacos , Infecciones por Virus Sincitial Respiratorio , Animales , Antivirales/farmacología , Antivirales/química , Profármacos/farmacología , Profármacos/química , Profármacos/síntesis química , Chlorocebus aethiops , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/virología , Humanos , Picornaviridae/efectos de los fármacos , Relación Estructura-Actividad , Virus Sincitiales Respiratorios/efectos de los fármacos , Descubrimiento de Drogas , Nucleósidos/química , Nucleósidos/farmacología , Infecciones por Picornaviridae/tratamiento farmacológico , Infecciones por Picornaviridae/virologíaRESUMEN
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Asunto(s)
Antivirales , ARN Polimerasa Dependiente del ARN , Humanos , Antivirales/farmacología , Antivirales/química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/química , Virus ARN/efectos de los fármacos , Virus ARN/enzimología , Metapneumovirus/efectos de los fármacos , Nucleótidos/química , Nucleótidos/farmacología , Nucleótidos/metabolismoRESUMEN
Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.
Asunto(s)
Antivirales , Profármacos , SARS-CoV-2 , Animales , SARS-CoV-2/efectos de los fármacos , Profármacos/farmacología , Profármacos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Ratones , Administración Oral , Chlorocebus aethiops , Células Vero , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Replicación Viral/efectos de los fármacos , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Nucleósidos/química , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Femenino , Modelos Animales de EnfermedadRESUMEN
Remdesivir 1 is an phosphoramidate prodrug that releases the monophosphate of nucleoside GS-441524 (2) into lung cells, thereby forming the bioactive triphosphate 2-NTP. 2-NTP, an analog of ATP, inhibits the SARS-CoV-2 RNA-dependent RNA polymerase replication and transcription of viral RNA. Strong clinical results for 1 have prompted interest in oral approaches to generate 2-NTP. Here, we describe the discovery of a 5'-isobutyryl ester prodrug of 2 (GS-5245, Obeldesivir, 3) that has low cellular cytotoxicity and 3-7-fold improved oral delivery of 2 in monkeys. Prodrug 3 is cleaved presystemically to provide high systemic exposures of 2 that overcome its less efficient metabolism to 2-NTP, leading to strong SARS-CoV-2 antiviral efficacy in an African green monkey infection model. Exposure-based SARS-CoV-2 efficacy relationships resulted in an estimated clinical dose of 350-400 mg twice daily. Importantly, all SARS-CoV-2 variants remain susceptible to 2, which supports development of 3 as a promising COVID-19 treatment.
Asunto(s)
COVID-19 , Profármacos , Chlorocebus aethiops , Humanos , Animales , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Nucleósidos , Profármacos/farmacología , Profármacos/uso terapéutico , ARN Viral , Antivirales/farmacología , Antivirales/uso terapéutico , FuranosRESUMEN
Despite the wide availability of several safe and effective vaccines that can prevent severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can partially evade vaccine immunity remains a global health concern. In addition, the emergence of highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.5 that can partially or fully evade (1) many therapeutic monoclonal antibodies in clinical use underlines the need for additional effective treatment strategies. Here, we characterize the antiviral activity of GS-5245, Obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved RNA-dependent viral RNA polymerase (RdRp). Importantly, we show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-related Bat-CoV RsSHC014, Middle East Respiratory Syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant in vitro and highly effective as antiviral therapy in mouse models of SARS-CoV, SARS-CoV-2 (WA/1), MERS-CoV and Bat-CoV RsSHC014 pathogenesis. In all these models of divergent coronaviruses, we observed protection and/or significant reduction of disease metrics such as weight loss, lung viral replication, acute lung injury, and degradation in pulmonary function in GS-5245-treated mice compared to vehicle controls. Finally, we demonstrate that GS-5245 in combination with the main protease (Mpro) inhibitor nirmatrelvir had increased efficacy in vivo against SARS-CoV-2 compared to each single agent. Altogether, our data supports the continuing clinical evaluation of GS-5245 in humans infected with COVID-19, including as part of a combination antiviral therapy, especially in populations with the most urgent need for more efficacious and durable interventions.
RESUMEN
The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.
Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , Microscopía por Crioelectrón , SARS-CoV-2 , Humanos , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/ultraestructura , COVID-19/virología , Nucleósidos/metabolismo , Nucleósidos/farmacología , ARN Viral/biosíntesis , ARN Viral/química , ARN Viral/metabolismo , SARS-CoV-2/enzimología , Especificidad por Sustrato , Guanosina Trifosfato/metabolismo , Caperuzas de ARNRESUMEN
Remdesivir (GS-5734; VEKLURY) is a single diastereomer monophosphoramidate prodrug of an adenosine analog (GS-441524). Remdesivir is taken up by target cells and metabolized in multiple steps to form the active nucleoside triphosphate (GS-443902), which acts as a potent inhibitor of viral RNA-dependent RNA polymerases. Remdesivir and GS-441524 have antiviral activity against multiple RNA viruses. Here, we expand the evaluation of remdesivir's antiviral activity to members of the families Flaviviridae, Picornaviridae, Filoviridae, Orthomyxoviridae, and Hepadnaviridae. Using cell-based assays, we show that remdesivir can inhibit infection of flaviviruses (such as dengue 1-4, West Nile, yellow fever, Zika viruses), picornaviruses (such as enterovirus and rhinovirus), and filoviruses (such as various Ebola, Marburg, and Sudan virus isolates, including novel geographic isolates), but is ineffective or is significantly less effective against orthomyxoviruses (influenza A and B viruses), or hepadnaviruses B, D, and E. In addition, remdesivir shows no antagonistic effect when combined with favipiravir, another broadly acting antiviral nucleoside analog, and has minimal interaction with a panel of concomitant medications. Our data further support remdesivir as a broad-spectrum antiviral agent that has the potential to address multiple unmet medical needs, including those related to antiviral pandemic preparedness.
Asunto(s)
Filoviridae , Fiebre Hemorrágica Ebola , Infección por el Virus Zika , Virus Zika , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Adenosina Monofosfato , Alanina , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Infección por el Virus Zika/tratamiento farmacológicoRESUMEN
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Ribonucleótidos , Humanos , Antivirales/farmacología , Exorribonucleasas/metabolismo , Ribonucleótidos/química , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética , Diseño de FármacosRESUMEN
Chronic hepatitis B (CHB) is a global health care challenge and a major cause of liver disease. To find new therapeutic avenues with a potential to functionally cure chronic Hepatitis B virus (HBV) infection, we performed a focused screen of epigenetic modifiers to identify potential inhibitors of replication or gene expression. From this work we identified isonicotinic acid inhibitors of the histone lysine demethylase 5 (KDM5) with potent anti-HBV activity. To enhance the cellular permeability and liver accumulation of the most potent KDM5 inhibitor identified (GS-080) an ester prodrug was developed (GS-5801) that resulted in improved bioavailability and liver exposure as well as an increased H3K4me3:H3 ratio on chromatin. GS-5801 treatment of HBV-infected primary human hepatocytes reduced the levels of HBV RNA, DNA and antigen. Evaluation of GS-5801 antiviral activity in a humanized mouse model of HBV infection, however, did not result in antiviral efficacy, despite achieving pharmacodynamic levels of H3K4me3:H3 predicted to be efficacious from the in vitro model. Here we discuss potential reasons for the disconnect between in vitro and in vivo efficacy, which highlight the translational difficulties of epigenetic targets for viral diseases.
Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Humanos , Animales , Ratones , Antivirales/farmacología , Hepatitis B Crónica/tratamiento farmacológico , EpigenómicaRESUMEN
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
RESUMEN
The urgent response to the COVID-19 pandemic required accelerated evaluation of many approved drugs as potential antiviral agents against the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using cell-based, biochemical, and modeling approaches, we studied the approved HIV-1 nucleoside/tide reverse transcriptase inhibitors (NRTIs) tenofovir (TFV) and emtricitabine (FTC), as well as prodrugs tenofovir alafenamide (TAF) and tenofovir disoproxilfumarate (TDF) for their antiviral effect against SARS-CoV-2. A comprehensive set of in vitro data indicates that TFV, TAF, TDF, and FTC are inactive against SARS-CoV-2. None of the NRTIs showed antiviral activity in SARS-CoV-2 infected A549-hACE2 cells or in primary normal human lung bronchial epithelial (NHBE) cells at concentrations up to 50 µM TAF, TDF, FTC, or 500 µM TFV. These results are corroborated by the low incorporation efficiency of respective NTP analogs by the SARS-CoV-2 RNA-dependent-RNA polymerase (RdRp), and lack of the RdRp inhibition. Structural modeling further demonstrated poor fitting of these NRTI active metabolites at the SARS-CoV-2 RdRp active site. Our data indicate that the HIV-1 NRTIs are unlikely direct-antivirals against SARS-CoV-2, and clinicians and researchers should exercise caution when exploring ideas of using these and other NRTIs to treat or prevent COVID-19.
Asunto(s)
Fármacos Anti-VIH , Tratamiento Farmacológico de COVID-19 , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Emtricitabina/farmacología , Emtricitabina/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Humanos , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Nucleótidos/farmacología , Pandemias , ARN Viral , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Tenofovir/farmacología , Tenofovir/uso terapéuticoRESUMEN
The coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parent nucleoside of remdesivir, which targets the highly conserved virus RNA-dependent RNA polymerase. GS-621763 exhibited antiviral activity against SARS-CoV-2 in lung cell lines and two different human primary lung cell culture systems. GS-621763 was also potently antiviral against a genetically unrelated emerging coronavirus, Middle East respiratory syndrome CoV (MERS-CoV). The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 administration reduced viral load and lung pathology; treatment also improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral that has recently received EUA approval, proved both drugs to be similarly efficacious in mice. These data support the exploration of GS-441524 oral prodrugs for the treatment of COVID-19.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infecciones por Coronavirus , Profármacos , Adenosina/análogos & derivados , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Humanos , Ratones , Nucleósidos , Padres , Profármacos/farmacología , Profármacos/uso terapéutico , SARS-CoV-2RESUMEN
Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.
Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Modelos Moleculares , Virus ARN/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/química , Alanina/farmacología , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , Virus ARN de Sentido Negativo/efectos de los fármacos , Virus ARN de Sentido Negativo/enzimología , Virus Nipah/efectos de los fármacos , Virus Nipah/enzimología , Virus ARN Monocatenarios Positivos/efectos de los fármacos , Virus ARN Monocatenarios Positivos/enzimología , Virus ARN/efectos de los fármacos , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Replicación Viral/efectos de los fármacosRESUMEN
The therapeutic targeting of the nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase (RdRp) of the Hepatitis C Virus (HCV) with nucleotide analogs led to a deep understanding of this enzymes structure, function and substrate specificity. Unlike previously studied DNA polymerases including the reverse transcriptase of Human Immunodeficiency Virus, development of biochemical assays for HCV RdRp proved challenging due to low solubility of the full-length protein and inefficient acceptance of exogenous primer/templates. Despite the poor apparent specific activity, HCV RdRp was found to support rapid and processive transcription once elongation is initiated in vitro consistent with its high level of viral replication in the livers of patients. Understanding of the substrate specificity of HCV RdRp led to the discovery of the active triphosphate of sofosbuvir as a nonobligate chain-terminator of viral RNA transcripts. The ternary crystal structure of HCV RdRp, primer/template, and incoming nucleotide showed the interaction between the nucleotide analog and the 2'-hydroxyl binding pocket and how an unfit mutation of serine 282 to threonine results in resistance by interacting with the uracil base and modified 2'-position of the analog. Host polymerases mediate off-target toxicity of nucleotide analogs and the active metabolite of sofosbuvir was found to not be efficiently incorporated by host polymerases including the mitochondrial RNA polymerase (POLRMT). Knowledge from studying inhibitors of HCV RdRp serves to advance antiviral drug discovery for other emerging RNA viruses including the discovery of remdesivir as an inhibitor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the virus that causes COVID-19.
Asunto(s)
Hepacivirus , Sofosbuvir/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , ARN Viral , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2RESUMEN
The COVID-19 pandemic remains uncontrolled despite the rapid rollout of safe and effective SARS-CoV-2 vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. Additionally, the emergence of SARS-CoV-2 variants of concern with their potential to escape therapeutic monoclonal antibodies emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parental nucleoside of remdesivir, which targets the highly conserved RNA-dependent RNA polymerase. GS-621763 exhibited significant antiviral activity in lung cell lines and two different human primary lung cell culture systems. The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 significantly reduced viral load, lung pathology, and improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral currently in human clinical trial, proved both drugs to be similarly efficacious. These data demonstrate that therapy with oral prodrugs of remdesivir can significantly improve outcomes in SARS-CoV-2 infected mice. Thus, GS-621763 supports the exploration of GS-441524 oral prodrugs for the treatment of COVID-19 in humans.
RESUMEN
The SARS-CoV-2 replication-transcription complex is an assembly of nonstructural viral proteins that collectively act to reproduce the viral genome and generate mRNA transcripts. While the structures of the individual proteins involved are known, how they assemble into a functioning superstructure is not. Applying molecular modeling tools, including protein-protein docking, to the available structures of nsp7-nsp16 and the nucleocapsid, we have constructed an atomistic model of how these proteins associate. Our principal finding is that the complex is hexameric, centered on nsp15. The nsp15 hexamer is capped on two faces by trimers of nsp14/nsp16/(nsp10)2, which then recruit six nsp12/nsp7/(nsp8)2 polymerase subunits to the complex. To this, six subunits of nsp13 are arranged around the superstructure, but not evenly distributed. Polymerase subunits that coordinate dimers of nsp13 are capable of binding the nucleocapsid, which positions the 5'-UTR TRS-L RNA over the polymerase active site, a state distinguishing transcription from replication. Analysis of the viral RNA path through the complex indicates the dsRNA that exits the polymerase passes over the nsp14 exonuclease and nsp15 endonuclease sites before being unwound by a convergence of zinc fingers from nsp10 and nsp14. The template strand is then directed away from the complex, while the nascent strand is directed to the sites responsible for mRNA capping. The model presents a cohesive picture of the multiple functions of the coronavirus replication-transcription complex and addresses fundamental questions related to proofreading, template switching, mRNA capping, and the role of the endonuclease.
Asunto(s)
Endorribonucleasas/metabolismo , Modelos Moleculares , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dimerización , Endorribonucleasas/química , Endorribonucleasas/genética , Humanos , Simulación del Acoplamiento Molecular , Estructura Cuaternaria de Proteína , ARN Bicatenario/química , ARN Bicatenario/metabolismo , SARS-CoV-2/aislamiento & purificación , Transcripción Genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación ViralRESUMEN
Improving clinical care for individuals infected with SARS-CoV-2 variants is a global health priority. Small-molecule antivirals like remdesivir (RDV) and biologics such as human monoclonal antibodies (mAbs) have demonstrated therapeutic efficacy against SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). It is not known whether combination RDV/mAb will improve outcomes over single-agent therapies or whether antibody therapies will remain efficacious against variants. Here, we show that a combination of two mAbs in clinical trials, C144 and C135, have potent antiviral effects against even when initiated 48 h after infection and have therapeutic efficacy in vivo against the B.1.351 variant of concern (VOC). Combining RDV and antibodies provided a modest improvement in outcomes compared with single agents. These data support the continued use of RDV to treat SARS-CoV-2 infections and the continued clinical development of the C144 and C135 antibody combination to treat patients infected with SARS-CoV-2 variants.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Antivirales/farmacología , Humanos , Ratones , SARS-CoV-2/patogenicidadRESUMEN
GS-9695 and GS-9822 are next-generation noncatalytic site integrase inhibitors (NCINIs) with significantly improved potency against human immunodeficiency virus compared with previous drugs such as BI-224436. Development stopped due to vacuolation of the bladder urothelium seen in cynomolgus monkey but not in rat; this lesion was absent in equivalent preclinical studies with BI-224436 (tested in dog and rat). Lesions were unlikely to be attributable to target because NCINIs specifically target viral integrase protein and no mammalian homologue is known. Secondary pharmacology studies, mitochondrial toxicity studies, immunophenotyping, and analysis of proteins implicated in cell-cell interactions and/or bladder integrity (E-cadherin, pan-cytokeratin, uroplakins) failed to offer any plausible explanation for the species specificity of the lesion. Because it was characterized by inflammation and disruption of urothelial morphology, we investigated physicochemical changes in the bladder of cynomolgus monkey (urinary pH 5.5-7.4) that might not occur in the bladder of rats (urinary pH 7.3-8.5). In measurements of surface activity, GS-9822 showed an unusual transition from a monolayer to a bilayer at the air/water interface with decreasing pH, attributed to the strong association between drug molecules in adjacent bilayer leaflets and expected to be highly disruptive to the urothelium. Structural analysis of GS-9822 and GS-9695 showed zwitterionic characteristics over the range of pH expected in cynomolgus monkey but not rat urine. This exotic surface behavior is unlikely with BI-224436 since it would transition from neutral to cationic (never zwitterionic) with decreasing pH. These data provide useful insights to guide discovery and development of NCINIs, related compounds, and zwitterions.
Asunto(s)
Inhibidores de Integrasa VIH , Urotelio , Animales , Perros , Concentración de Iones de Hidrógeno , Macaca fascicularis , Ratas , Especificidad de la EspecieRESUMEN
Remdesivir (RDV; GS-5734, Veklury), the first FDA-approved antiviral to treat COVID-19, is a single-diastereomer monophosphoramidate prodrug of an adenosine analogue. RDV is taken up in the target cells and metabolized in multiple steps to form the active nucleoside triphosphate (TP) (GS-443902), which, in turn, acts as a potent and selective inhibitor of multiple viral RNA polymerases. In this report, we profiled the key enzymes involved in the RDV metabolic pathway with multiple parallel approaches: (i) bioinformatic analysis of nucleoside/nucleotide metabolic enzyme mRNA expression using public human tissue and lung single-cell bulk mRNA sequence (RNA-seq) data sets, (ii) protein and mRNA quantification of enzymes in human lung tissue and primary lung cells, (iii) biochemical studies on the catalytic rate of key enzymes, (iv) effects of specific enzyme inhibitors on the GS-443902 formation, and (v) the effects of these inhibitors on RDV antiviral activity against SARS-CoV-2 in cell culture. Our data collectively demonstrated that carboxylesterase 1 (CES1) and cathepsin A (CatA) are enzymes involved in hydrolyzing RDV to its alanine intermediate MetX, which is further hydrolyzed to the monophosphate form by histidine triad nucleotide-binding protein 1 (HINT1). The monophosphate is then consecutively phosphorylated to diphosphate and triphosphate by cellular phosphotransferases. Our data support the hypothesis that the unique properties of RDV prodrug not only allow lung-specific accumulation critical for the treatment of respiratory viral infection such as COVID-19 but also enable efficient intracellular metabolism of RDV and its MetX to monophosphate and successive phosphorylation to form the active TP in disease-relevant cells.