Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Vet Parasitol ; 330: 110237, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878462

RESUMEN

Cryptosporidium parvum is an important zoonotic pathogen that is studied worldwide. MicroRNAs (miRNAs) act as post-transcriptional regulators and may play a key role in modulating host epithelial responses following Cryptosporidium infection. Our previous study has shown that C. parvum downregulates the expression of miR-181d through the p50-dependent TLRs/NF-κB pathway. However, the mechanism by which miR-181d regulates host cells in response to C. parvum infection remains unclear. The present study found that miR-181d downregulation inhibited cell apoptosis and increased parasite burden in HCT-8 cells after C. parvum infection. Bioinformatics analysis and luciferase reporter assays have shown that BCL2 was a target gene for miR-181d. Moreover, BCL2 overexpression and miR-181d downregulation had similar results. To further investigate the mechanism by which miR-181d regulated HCT-8 cell apoptosis during C. parvum infection, the expression of molecules involved in the intrinsic apoptosis pathway was detected. Bax, caspase-9, and caspase-3 expression was decreased at 4, 8, 12, and 24 hpi and upregulated at 36 and 48 hpi. Interfering with the expression of miR-181d or BCL2 significantly affected the expression of molecules in the intrinsic apoptosis pathway. These data indicated that miR-181d targeted BCL2 to regulate HCT-8 cell apoptosis and parasite burden in response to C. parvum infection via the intrinsic apoptosis pathway. These results allowed us to further understand the regulatory mechanisms of host miRNAs during Cryptosporidium infection, and provided a theoretical foundation for the design and development of anti-cryptosporidiosis drugs.


Asunto(s)
Apoptosis , Criptosporidiosis , Cryptosporidium parvum , MicroARNs , Proteínas Proto-Oncogénicas c-bcl-2 , MicroARNs/genética , MicroARNs/metabolismo , Cryptosporidium parvum/genética , Cryptosporidium parvum/fisiología , Humanos , Criptosporidiosis/parasitología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Línea Celular Tumoral
2.
Parasitol Res ; 122(11): 2621-2630, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37676305

RESUMEN

Cryptosporidium is a highly pathogenic water and food-borne zoonotic parasitic protozoan that causes severe diarrhea in humans and animals. Apicomplexan parasites invade host cells via a unique motility process called gliding, which relies on the parasite's microfilaments. Actin depolymerizing factor (ADF) is a fibrous-actin (F-actin) and globular actin (G-actin) binding protein essential for regulating the turnover of microfilaments. However, the role of ADF in Cryptosporidium parvum (C. parvum) remains unknown. In this study, we preliminarily characterized the biological functions of ADF in C. parvum (CpADF). The CpADF was a 135-aa protein encoded by cgd5_2800 gene containing an ADF-H domain. The expression of cgd5_2800 gene peaked at 12 h post-infection, and the CpADF was located in the cytoplasm of oocysts, middle region of sporozoites, and cytoplasm of merozoites. Neutralization efficiency of anti-CpADF serum was approximately 41.30%. Actin sedimentation assay revealed that CpADF depolymerized but did not undergo cosedimentation with F-actin and its ability of F-actin depolymerization was pH independent. These results provide a basis for further investigation of the roles of CpADF in the invasion of C. parvum.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Humanos , Animales , Cryptosporidium parvum/genética , Cryptosporidium parvum/metabolismo , Actinas/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Destrina/metabolismo , Criptosporidiosis/parasitología , Proteínas de Microfilamentos/metabolismo
3.
J Diabetes Complications ; 37(10): 108567, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37647712

RESUMEN

BACKGROUND: Isthmin-1 (Ism-1) is a newly identified insulin-like adipokine that increases glucose uptake by adipocytes and inhibits hepatic lipid synthesis. Recent studies have shown that Ism-1 can improve the metabolic disorders associated with type 2 diabetes mellitus (T2DM) and improve lipid metabolism. The classic function of high-density lipoprotein cholesterol (HDL-C) is to transport cholesterol from extra-hepatic tissues to the liver for metabolism. In contrast, disorders of lipid metabolism and inflammation are the leading causes of atherosclerosis (As). Atherosclerosis often manifests as loss of elasticity, lipid accumulation, fibrous tissue proliferation and calcium deposits in the affected arteries, eventually forming plaques. AIM: To illustrate the correlation between HDL-C and Ism-1 in T2DM, and the relationship between lipoprotein cholesterol and carotid plaque. METHODS: A total of 128 patients with T2DM were enrolled in the study and basic information was collected. HDL-C levels were measured chemically. Serum Ism-1 levels were measured using an enzyme-linked immunosorbent assay (ELISA). Linear regression analysis was used to assess the correlation between serum Ism-1 levels and HDL-C in patients with T2DM. Basic information was again collected from 226 patients with T2DM. Independent sample t-tests were performed to explore the relationship between carotid plaque formation and lipids. RESULTS: HDL-C was divided into four groups according to quartiles and there was a between-group difference in Ism-1 (p = 0.040). Multivariable linear regression showed a negative association between Ism-1 and HDL-C in T2DM (ß = -0.235, p < 0.001), even after adjusting for related factors (ß = -0.165, p = 0.009). Low-density lipoprotein cholesterol (LDL-C) and HDL-C showed significant differences between the carotid plaque group and the non-carotid plaque group (pLDL-C = 0.007, pHDL-C = 0.003). CONCLUSION: Serum Ism-1 and HDL-C are negatively correlated in T2DM. LDL-C is significantly higher in carotid plaque group than non-carotid plaque group, while HDL-C is significantly lower than in the non-carotid plaque group.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Humanos , HDL-Colesterol , Diabetes Mellitus Tipo 2/complicaciones , LDL-Colesterol , Grosor Intima-Media Carotídeo , Colesterol , Placa Aterosclerótica/complicaciones , Factores de Riesgo
4.
Artículo en Inglés | MEDLINE | ID: mdl-37640504

RESUMEN

INTRODUCTION: Isthmin-1 (Ism-1) is a novel adipokine. However, little is known regarding the association between Ism-1 and type 2 diabetes mellitus (T2DM). This study aimed to investigate the relationship between serum Ism-1 levels and glomerular filtration rate (GFR) in patients with T2DM. RESEARCH DESIGN AND METHODS: A total of 209 patients with T2DM were recruited into this retrospective study. Clinical data were collected. Fasting blood samples were collected for serum Ism-1 testing using ELISA kits. Based on the estimated glomerular filtration rate (eGFR), participants were divided into the normal eGFR group (n=167) and the decreased eGFR group (n=42). The relationship between Ism-1 and eGFR was assessed using linear and binary logistic regression analyses. Receiver operating characteristic (ROC) curve analysis was employed to examine the predictive efficacy of Ism-1 for distinguishing patients with eGFR <60 mL/min/1.73 m2. RESULTS: Compared with patients with normal eGFR, serum Ism-1 levels were increased in patients with decreased eGFR (p<0.001). Serum Ism-1 levels were negatively correlated with eGFR in patients with T2DM even after multiple adjustments (p<0.001). For each 0.1 ng/mL increment of Ism-1, the odds of having an eGFR <60 mL/min/1.73 m2 increased by 54.5% (OR=1.545; p<0.001) in patients with T2DM. ROC analysis showed that higher serum Ism-1 levels (>1.297 ng/mL) had predictive efficacy in patients with eGFR <60 mL/min/1.73 m2, with an area under the curve of 0.908. CONCLUSIONS: Serum Ism-1 levels were inversely associated with eGFR, and high Ism-1 levels may be used as a potential biomarker for predicting kidney function impairment in patients with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Tasa de Filtración Glomerular , Estudios Retrospectivos , Adipoquinas , Ensayo de Inmunoadsorción Enzimática
5.
Artículo en Inglés | MEDLINE | ID: mdl-36126993

RESUMEN

INTRODUCTION: Isthmin-1 (Ism-1), as a novel adipokine, plays a role in glucose homeostasis and lipid metabolism. However, the relationship between Ism-1 and type 2 diabetes mellitus (T2DM) remains unclear. This study aims to investigate the association of serum Ism-1 levels with albuminuria and insulin resistance in patients with T2DM and preserved renal function. RESEARCH DESIGN AND METHODS: A total of 150 patients with T2DM were recruited. The presence of albuminuria was evaluated by urinary albumin:creatinine ratio (UACR) in first morning urine sample. Serum Ism-1 levels were tested by ELISA. Homeostasis model assessments were used to evaluate insulin resistance. Binary logistic regression and multivariable linear regression analyses were used to assess the association of serum Ism-1 levels with albuminuria. Multivariable linear regression analyses were performed to explore the correlation of serum Ism-1 levels with insulin resistance. RESULTS: Compared with the normal-albuminuria and microalbuminuria groups, serum Ism-1 levels were significantly higher in the macroalbuminuria group (p<0.01). Binary logistic regression analyses showed that serum Ism-1 was positively associated with odds of albuminuria even after multiple adjustments (OR=4.766, p=0.013). Serum Ism-1 was positively associated with log10-transformed UACR (ß=0.625, p<0.001). However, the associations between serum Ism-1 levels and insulin resistance were not observed in patients with T2DM. CONCLUSIONS: Serum Ism-1 levels were positively and independently correlated with the severity of albuminuria in patients with T2DM but not with insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Trombospondinas/sangre , Adipoquinas , Albúminas , Albuminuria/complicaciones , Albuminuria/orina , Creatinina , Glucosa , Humanos
6.
Vet Parasitol ; 305: 109710, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35462275

RESUMEN

Cryptosporidium spp. can cause diarrhea and even death in humans and animals. Host microRNAs (miRNAs) play an important role in the post-transcriptional regulation of the innate immune response to Cryptosporidium infection. To study host miRNA activity in the innate immune response to C. parvum infection, we examined the expression of miR-181d in HCT-8 cells infected with C. parvum and found that it was significantly downregulated, while TLR2, TLR4, NF-κB, and myD88 involved in the TLR/NF-κB signaling pathway were significantly upregulated at the early stages of C. parvum infection. We transfected cells with short-interfering RNAs (siRNA) as TLR2, TLR4, and NF-κB inhibitors. Analysis by quantitative real-time polymerase chain reaction (qPCR) and western blot confirmed that C. parvum downregulates miR-181d expression via the p50 subunit-dependent TLR2/TLR4-NF-κB signaling pathway in HCT-8 cells. This study provides a new theoretical foundation to elucidate the regulatory mechanism of host miRNAs against Cryptosporidium infection.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , MicroARNs , Animales , Cryptosporidium/genética , Cryptosporidium parvum/genética , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/metabolismo
7.
Clin Epigenetics ; 13(1): 213, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863285

RESUMEN

BACKGROUND: Cortisol-producing adrenocortical adenoma (CPA) during pregnancy rarely occurs in clinic. Growing evidence suggests that DNA methylation plays a key role in adrenocortical adenomas. The present study aims to examine the genome-wide DNA methylation profiles and identify the differences in DNA methylation signatures of non-pregnant and pregnant patients with CPA. RESULTS: Four pregnant and twelve non-pregnant patients with CPA were enrolled. The pregnant patients with CPA had higher serum cortisol, Estradiol, Progesterone, and human chorionic gonadotropin concentration, while having lower serum FSH (follicle-stimulating hormone) and luteinizing hormone concentrations (P < 0.01). Compared with the non-pregnant patients, the duration is shorter, and the growth rate of the tumor is faster in pregnant patients with CPA (P < 0.05). Morphology and cell proliferation assay showed that the percentage of Ki-67 positive cells in CPA were higher in pregnant group than non-pregnant group (8.0% vs 5.5%, P < 0.05). The DNA methylation analysis showed that Genome-wide DNA methylation signature difference between pregnant and non-pregnant with CPA, that the pregnant group had more hypermethylated DMPs (67.94% vs 22.16%) and less hypomethylated DMPs (32.93% vs 77.84%). The proportion of hypermethylated DMPs was relatively high on chromosomes 1 (9.68% vs 8.67%) and X (4.99% vs 3.35%) but lower on chromosome 2(7.98% vs 12.92%). In pregnant patients with CPA, 576 hypomethylated DMPs and 1109 hypermethylated DMPs were identified in the DNA promoter region. Bioinformatics analysis indicated that the Wnt/ß-Catenin pathway, Ras/MAPK Pathway and PI3K-AKT Pathway were associated with the development of CPA during pregnancy. CONCLUSIONS: Genome-wide DNA methylation profiling of CPA in non-pregnant and pregnant patients was identified in the present study. Alterations of DNA methylation were associated with the pathogenesis and exacerbation of CPA during pregnancy.


Asunto(s)
Adenoma Corticosuprarrenal/patología , Metilación de ADN/genética , Adenoma Corticosuprarrenal/fisiopatología , Adulto , Metilación de ADN/inmunología , Femenino , Crecimiento y Desarrollo/genética , Crecimiento y Desarrollo/fisiología , Humanos , Embarazo
8.
Open Med (Wars) ; 16(1): 1583-1590, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722893

RESUMEN

Type 2 diabetes mellitus (T2DM) is a strong risk tfactor for osteosarcopenia. The relationship between musculoskeletal index and ß-cell function remains controversial. We aimed to describe the clinical characteristics of osteosarcopenia and to explore the association between osteosarcopenia and ß-cell function, as well as insulin resistance in patients with T2DM. A total of 150 middle-aged and older nonobese patients with T2DM were recruited. Bone mineral density (BMD) and body composition were measured by the dual-energy X-ray absorptiometry scanner. The homeostasis model assessment of insulin resistance and Matsuda index were used to evaluate insulin resistance status. ß-Cell function was estimated by the area under the curve insulin/glucose (AUC-Ins/Glu) and the area under the curve C-peptide/glucose (AUC-CP/Glu). T2DM patients with osteosarcopenia had lower body mass index, waist circumference, body fat percentage, AUC-Ins/Glu, and AUC-CP/Glu. Both AUC-Ins/Glu (OR = 0.634, P = 0.008) and AUC-CP/Glu (OR = 0.491, P = 0.009) were negatively associated with the presence of osteosarcopenia. Multivariate linear regression analysis showed that ß-cell function was positively associated with the skeletal muscle mass index, whereas it showed no correlation with lumbar or hip BMD. ß-Cell function is associated with osteosarcopenia in middle-aged and older nonobese patients with T2DM. These findings suggest that ß-cell function might be a protective factor against osteosarcopenia.

9.
J Diabetes Investig ; 12(10): 1919-1922, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33742773

RESUMEN

SHORT syndrome (short stature, hyperextensibility, ocular depression [deeply set eyes], Rieger anomaly and teething delay) is very rare, with a few cases reported in the literature. We report a case of SHORT syndrome with a novel PIK3R1 mutation (c.2008delT) and complicated with severe insulin resistance. Although no treatment guidelines are available to relieve insulin resistance in SHORT syndrome, our treatment plans, including lifestyle intervention combined with metformin and pioglitazone, were carried out for this patient. After the intervention, insulin resistance and hyperinsulinemia in this patient were significantly decreased during a 6-month follow up, which showed the effect of our therapeutic strategies.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/genética , Trastornos del Crecimiento/genética , Hipercalcemia/genética , Resistencia a la Insulina , Enfermedades Metabólicas/genética , Nefrocalcinosis/genética , Niño , Humanos , Masculino , Mutación
10.
Int J Mol Sci ; 19(7)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970857

RESUMEN

Blast disease is one of the major rice diseases, and causes nearly 30% annual yield loss worldwide. Resistance genes that have been cloned, however, are effective only against specific strains. In cultivation practice, broad-spectrum resistance to various strains is highly valuable, and requires researchers to investigate the basal defense responses that are effective for diverse types of pathogens. In this study, we took a quantitative proteomic approach and identified 634 rice proteins responsive to infections by both Magnaporthe oryzae strains Guy11 and JS153. These two strains have distinct pathogenesis mechanisms. Therefore, the common responding proteins represent conserved basal defense to a broad spectrum of blast pathogens. Gene ontology analysis indicates that the “responding to stimulus" biological process is explicitly enriched, among which the proteins responding to oxidative stress and biotic stress are the most prominent. These analyses led to the discoveries of OsPRX59 and OsPRX62 that are robust callose inducers, and OsHSP81 that is capable of inducing both ROS production and callose deposition. The identified rice proteins and biological processes may represent a conserved rice innate immune machinery that is of great value for breeding broad-spectrum resistant rice in the future.


Asunto(s)
Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteómica/métodos , Resistencia a la Enfermedad
11.
Plant J ; 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29775494

RESUMEN

Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more reactive oxygen species accumulation and callose deposition, and upregulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases, such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA